Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effects of phase separation and decomposition on the minority carrier diffusion length in AlxGa1-xN films

dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorAlbrecht, M.
dc.contributor.authorKrinke, J.
dc.contributor.authorDimitrov, R.
dc.contributor.authorStutzmann, M.
dc.contributor.authorStrunk, H. P.
dc.date.accessioned2023-06-20T18:52:17Z
dc.date.available2023-06-20T18:52:17Z
dc.date.issued2000-03-01
dc.description© 2000 American Institute of Physics. The authors thank Professor Piqueras for helpful discussions. A. Cremades thanks the Spanish Ministerio de Educación y Cultura for a postdoctoral grant. This work was supported by the Bayerische Forschungsstiftung (FOROPTO II).
dc.description.abstractCombined electron beam induced current and transmission electron microscopy (TEM) measurements have been performed on both undoped and Si-doped AlGaN epitaxial films with aluminum contents x ranging from x = 0 to x = 0.79, in order to correlate the electrical and structural properties of the films. The diffusion length of holes in the films ranges between 0.3 and 15.9 mu m, and the estimated lifetime of holes for doped samples varies between 0.2 ns and 16 mu s. Different effects contribute to the observed increase in the diffusion length with increasing aluminum content. Among others, dislocations seem to be active as nonradiative recombination sites, and phase separation and decomposition as observed by TEM in Al-rich alloys lead to the formation of a spatially indirect recombination path due to the piezoelectric field in the films. Potential fluctuations associated with these phase irregularities could also give rise to electron induced persistent conductivity contributing to the increase of the diffusion length. From our experimental observations, we conclude that the silicon dopants are partially activated in Al-rich alloys, and do not influence significantly the values of the diffusion length of holes in these samples.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipBayerische Forschungsstiftung (FOROPTO II)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23397
dc.identifier.doi10.1063/1.372187
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://jap.aip.org/japiau/v87/i5/p2357_s1
dc.identifier.relatedurlhttp://jap.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58819
dc.issue.number5
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final2362
dc.page.initial2357
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordN-Type Gan
dc.subject.keywordChemical-Vapor-Deposition
dc.subject.keywordPersistent Photoconductivity
dc.subject.keywordYellow Luminescence
dc.subject.keywordQuantum-Wells
dc.subject.keywordHeterostructures
dc.subject.keywordRelaxation
dc.subject.keywordLifetime
dc.subject.keywordCenters
dc.subject.ucmFísica de materiales
dc.titleEffects of phase separation and decomposition on the minority carrier diffusion length in AlxGa1-xN films
dc.typejournal article
dc.volume.number87
dcterms.references1 M. S. Shur, Mater. Res. Soc. Symp. Proc. 483, 15 (1998). 2 J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Appl. Phys. 83, 6148 (1998). 3 L. Chernyak, A. Osinsky, H. Temkin, J. W. Yang, Q. Chen, and M. Asif Khan, Appl. Phys. Lett. 69, 2531 (1996). 4 J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. Asif Khan, S. A. Nikishin, G. A. Seryogin, A. V. Osinsky, L. Chernyak, H. Temkin, C. Hu, and S. Mahajan, Appl. Phys. Lett. 69, 3566 (1996). 5 S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolani, and H. Erikson, Appl. Phys. Lett. 70, 420 (1997). 6 X. Zhang, P. Kung, D. Walker, J. Piortrowski, A. Rogalski, A. Saxler, and M. Razeghi, Appl. Phys. Lett. 67, 2028 (1995). 7 F. Binet, J. Y. Duboz, N. I. Laurent, E. Rosencher, O. Briot, and R. L. Aulombard, J. Appl. Phys. 81, 6449 (1997). 8 A. Jakubowich, R. Tenne, M. Wolf, A. Wold, and D. Mahalu, Phys. Rev. B 40, 2992 (1989). 9 M. Buongiorno Nardelli, K. Rapcewicz, and J. Bernholc, Phys. Rev. B 55, 7323 (1990). 10 M. Buongiorno Nardelli, K. Rapcewicz, and J. Bernholc, Appl. Phys. Lett. 71, 3135 (1997). 11 M. T. Hirsch, J. A. Wolk, W. Walukiewicz, and E. E. Haller, Appl. Phys. Lett. 71, 1098 (1997). 12 H. M. Chen, Y. F. Chen, M. C. Lee, and M. S. Feng, Phys. Rev. B 56, 6942 (1997). 13 X. Z. Dang, C. D. Wang, E. T. Yu, K. S. Boutros, and J. M. Redwing, Appl. Phys. Lett. 72, 2745 (1998). 14 J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1474 (1996). 15 C. Johnson, J. Y. Lin, H. X. Jiang, M. Asif Khan, and C. J. Sun, Appl. Phys. Lett. 68, 1808 (1996). 16 C. A. Dimitriadis, J. Phys. D: Appl. Phys. 14, 2269 (1981). 17 X. Zhang, P. Kung, A. Saxier, D. Walker, T. C. Wang, and M. Razeghi, Appl. Phys. Lett. 67, 1745 (1995). 18 B.-C. Chung and M. Gershenzon, J. Appl. Phys. 72, 651 (1992). 19 H. Sato, T. Minami, E. Yamada, M. I. Shii, and S. Takata, J. Appl. Phys. 75, 1405 (1995). 20 C. H. Park and D. J. Chadi, Phys. Rev. B 55, 12995 (1997). 21 T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys., Part 2 37, L398 (1998). 22 M. Albrecht, S. Christiansen, H. P. Strunk, G. Salviati, O. Ambacher, and M. Stutzmann (unpublished). 23 Y. T. Rebane, Y. G. Shreter, and M. Albrecht, Phys. Status Solidi A 164, 141 (1997). 24 J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, Phys. Rev. B 57, R9435 (1998). 25 G. Mohs, B. Fluegel, H. Giessen, H. Tajalli, N. Peyghambarian, P.-C. Chin, B.-S. Philips, and M. Osinski, Appl. Phys. Lett. 67, 1515 (1995). 26 J. S. Im, A. Moritz, F. Steuber, V. Hárle, F. Scholz, and A. Hangleiter, Appl. Phys. Lett. 70, 631 (1997). 27 J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997). 28 I.-H. Lee, I.-H. Choi, C. R. Lee, and S. K. Noh, Appl. Phys. Lett. 71, 1359 (1997). 29 E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, M. Asif Khan, D. T. Olson, J. N. Kuznia, and D. K. Wickenden, Phys. Rev. B 51, 13326 (1995). 30 O. P. Seifert, M. T. Hirsch, O. Kirfel, J. Parisi, O. Ambacher, M. Kelly, and M. Stutzmann (private communication). 31 M. K. Sheinkman and A. Y. Shik, Sov. Phys. Semicond. 10, 128 (1976).
dspace.entity.typePublication
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication.latestForDiscoveryda0d631e-edbf-434e-8bfd-d31fb2921840

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna40libre.pdf
Size:
925.82 KB
Format:
Adobe Portable Document Format

Collections