Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers

dc.contributor.authorPinelli, Alfredo
dc.contributor.authorNaqavi, I.Z.
dc.contributor.authorPiomelli, U.
dc.contributor.authorFavier, J.
dc.date.accessioned2023-06-20T03:33:34Z
dc.date.available2023-06-20T03:33:34Z
dc.date.issued2010
dc.description.abstractWe present an immersed-boundary algorithm for incompressible flows with complex boundaries, suitable for Cartesian or curvilinear grid system. The key stages of any immersed-boundary technique are the interpolation of a velocity field given on a mesh onto a general boundary (a line in 2D, a surface in 3D), and the spreading of a force field from the immersed boundary to the neighboring mesh points, to enforce the desired boundary conditions on the immersed-boundary points. We propose a technique that uses the Reproducing Kernel Particle Method [W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids 20(8) (1995) 1081-1106] for the interpolation and spreading. Unlike other methods presented in the literature, the one proposed here has the property that the integrals of the force field and of its moment on the grid are conserved, independent of the grid topology (uniform or non-uniform, Cartesian or curvilinear). The technique is easy to implement, and is able to maintain the order of the original underlying spatial discretization. Applications to two- and three-dimensional flows in Cartesian and non-Cartesian grid system, with uniform and non-uniform meshes are presented.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Innovation and Science
dc.description.sponsorshipNatural Science and Engineering Research Council of Canada (NSERC)
dc.description.sponsorshipCanada Research Chair
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21893
dc.identifier.doi10.1016/j.jcp.2010.08.021
dc.identifier.issn0021-9991
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0021999110004687
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43870
dc.issue.number24
dc.journal.titleJournal of Computational Physics
dc.language.isoeng
dc.page.final9091
dc.page.initial9073
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu53
dc.subject.cdu004
dc.subject.keywordIncompressible Navier-Stokes equations
dc.subject.keywordImmersed-boundary method
dc.subject.keywordReproducing Kernel Particle Methods
dc.subject.ucmFísica (Física)
dc.subject.ucmInformática (Informática)
dc.subject.unesco22 Física
dc.subject.unesco1203.17 Informática
dc.titleImmersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers
dc.typejournal article
dc.volume.number229
dspace.entity.typePublication
relation.isAuthorOfPublication2b7c93f7-c4d1-42d5-820a-333c428d96c2
relation.isAuthorOfPublication.latestForDiscovery2b7c93f7-c4d1-42d5-820a-333c428d96c2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pinelli07elsevier.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format

Collections