Algoritmo de evacuaciones
Loading...
Official URL
Full text at PDC
Publication date
2017
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
Las personas, a lo largo de la historia, siempre se han encontrado ante situaciones de riesgo para sus vidas, como son los incendios. Con la finalidad de proteger sus vidas, existen estudios que intentan prevenir y entender el comportamiento de los seres humanos. Los compotarmientos estudiados van desde los que afectan solo a una persona, hasta los comportamientos de multitudes o pequeños grupos que surgen de manera espontánea, pero debido a la dificultad de recrear estas situaciones y a la complejidad del ser humano, no hay un consenso o una única corriente de pensamiento sobre ello. Las herramientas de simulación pueden ayudar a recrear estos desastres. Para el estudio de este campo y facilitar las evacuaciones ante estas situaciones, se tienen que tener en cuenta diversas variables que dan lugar a comportamientos como son, la experiencia, el conocimiento del lugar y del entorno, las relaciones sociales, entre otras.
Este es uno de los objetivos de este algoritmo o modelo de evacuaciones que sigue la teoría de la norma emergente de Killian y Turner, por la que individuos con intereses comunes tienen comportamientos similares dando lugar a normas emergentes y, implementa reacciones y factores estudiados en las dos guías de buenas prácticas del especialista Manuel Fidalgo. Este algoritmo permite la simulación de varios comportamientos y reacciones en desastres, sujetas a unas variables que representan características de las personas. El algoritmo implementado en Java y con simulaciones ejecutadas en la herramienta MASSIS, puede ser probado en diferentes tamaños de entornos y con varios tipos de incendios.
Este trabajo agradece el apoyo y mantenimiento de de la plataforma MASSIS desarrollada dentro del proyecto MOSI-AGIL (S2013/ICE-3019) con la financiación del gobierno de la Comunidad de Madrid y fondos FEDER. El proyecto es liderado por la Universidad Rey Juan Carlos y participan también la Universidad Politécnica y Universidad Complutense. El grupo GRASIA representa a la UCM en este consorcio. El objetivo del proyecto es crear tecnologías que puedan influenciar a los peatones en grandes instalaciones.
People throughout history have always been faced with situations of risk to their lives, such as fires. In order to protect their lives, there are studies that try to prevent and understand the behavior of humans. The studied behavior range from those that affect only one person, to the behavior of multitudes or small groups that arise spontaneously. Nevertheless to the difficulty of recreating these situations and the complexity of the human being, there is no consensus or a unique way of thinking about it. Simulation tools can help recreate these disasters. In order to study this field and facilitate evacuations in these situations, it is necessary to take into account diverse variables that trigger behaviors: the experience, the knowledge of the place and the environment, the social relations, among others. This is one of the objectives of this algorithm or model of evacuations based the theory of the emerging norm of Killian and Turner, by which individuals with common interests have similar behaviors giving rise to emerging norms and, it implements reactions and factors studied in the two guides of good practices of the specialist Manuel Fidalgo. This algorithm allows the simulation of several behaviors and reactions in disasters, subject to variables that represent characteristics of the people. The algorithm was implemented in Java within the MASSIS tool. Using this tool, different fire evacuation scenarios were tested. This work acknowledges the support of the MASSIS framework developed under the MOSI-AGIL (S2013/ICE-3019) project funded by the Government of the Region of Madrid, and European Structural Funds (FEDER). The project is leaded by the Universidad Rey Juan Carlos, and participated by Universidad Politécnica de Madrid and Universidad Complutense de Madrid. GRASIA research group represents the UCM in this consortium. The goal of the project is to create technologies that can influence pedestrians in their walking habits within a large facility.
People throughout history have always been faced with situations of risk to their lives, such as fires. In order to protect their lives, there are studies that try to prevent and understand the behavior of humans. The studied behavior range from those that affect only one person, to the behavior of multitudes or small groups that arise spontaneously. Nevertheless to the difficulty of recreating these situations and the complexity of the human being, there is no consensus or a unique way of thinking about it. Simulation tools can help recreate these disasters. In order to study this field and facilitate evacuations in these situations, it is necessary to take into account diverse variables that trigger behaviors: the experience, the knowledge of the place and the environment, the social relations, among others. This is one of the objectives of this algorithm or model of evacuations based the theory of the emerging norm of Killian and Turner, by which individuals with common interests have similar behaviors giving rise to emerging norms and, it implements reactions and factors studied in the two guides of good practices of the specialist Manuel Fidalgo. This algorithm allows the simulation of several behaviors and reactions in disasters, subject to variables that represent characteristics of the people. The algorithm was implemented in Java within the MASSIS tool. Using this tool, different fire evacuation scenarios were tested. This work acknowledges the support of the MASSIS framework developed under the MOSI-AGIL (S2013/ICE-3019) project funded by the Government of the Region of Madrid, and European Structural Funds (FEDER). The project is leaded by the Universidad Rey Juan Carlos, and participated by Universidad Politécnica de Madrid and Universidad Complutense de Madrid. GRASIA research group represents the UCM in this consortium. The goal of the project is to create technologies that can influence pedestrians in their walking habits within a large facility.
Description
Trabajo de Fin de Grado en Ingeniería Informática (Universidad Complutense, Facultad de Informática, curso 2016/2017)