Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics

dc.contributor.authorVelasco-López, Jorge-Eusebio
dc.contributor.authorCarrasco González, Ramón Alberto
dc.contributor.authorSerrano-Guerrero, Jesús
dc.contributor.authorChiclana, Francisco
dc.date.accessioned2025-01-15T10:07:32Z
dc.date.available2025-01-15T10:07:32Z
dc.date.issued2024
dc.description.abstractSocial networks and official statistics have become vital sources of information in times of health emergencies. The ability to monitor and profile social sentiment is essential for understanding public perception and response in the context of public health crises, such as the one resulting from the COVID-19 pandemic. This study will explore how social sentiment monitoring and profiling can be conducted using information from social networks and official statistics, and how this combination of data can offer a more complete picture of social dynamics in times of emergency, providing a valuable tool for understanding public perception and guiding a public health response. To this end, a three-layer architecture based on Big Data and Artificial Intelligence is presented: the first layer focuses mainly on collecting, storing, and governing the necessary data such as social media and official statistics; in the second layer, the representation models and machine learning necessary for knowledge generation are built, and in the third layer the previously generated knowledge is adapted for better understanding by crisis managers through visualization techniques among others. Based on this architecture, a KDD (Knowledge Discovery in Databases) framework is implemented using methodological tools such as sentiment analysis, fuzzy 2-tuple linguistic models and time series prediction with the Prophet model. As a practical demonstration of the proposed model, we use tweets as data source (from the social network X, formerly known as Twitter) generated during the COVID-19 pandemic lockdown period in Spain, which are processed to identify the overall sentiment using sentiment analysis techniques and fuzzy linguistic variables, and combined with official statistical indicators for prediction, visualizing the results through dashboards.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationVelasco-López, J.-E.; Carrasco, R.-A.; Serrano-Guerrero, J.; Chiclana, F. Profiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics. Mathematics 2024, 12, 911. https://doi.org/ 10.3390/math1206091
dc.identifier.doi10.3390/math12060911
dc.identifier.officialurlhttps://doi.org/10.3390/math12060911
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114401
dc.issue.number911
dc.journal.titleMathematics
dc.language.isoeng
dc.publisherMDPI
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu004.774.1
dc.subject.cdu519.8
dc.subject.keywordsentiment analysis
dc.subject.keywordCOVID-19
dc.subject.keywordofficial statistics
dc.subject.keywordsocial media
dc.subject.keyword2-tuple fuzzy linguistic model
dc.subject.keywordtime series forecasting
dc.subject.ucmInvestigación operativa (Estadística)
dc.subject.ucmInternet (Ciencias de la Información)
dc.subject.ucmOpinión pública (Sociología)
dc.subject.ucmLingüística
dc.subject.unesco1209 Estadística
dc.subject.unesco5701.04 Lingüística Informatizada
dc.subject.unesco3202 Epidemiología
dc.titleProfiling Social Sentiment in Times of Health Emergencies with Information from Social Networks and Official Statistics
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication658b3e73-df89-4013-b006-45ea9db05e25
relation.isAuthorOfPublication.latestForDiscovery658b3e73-df89-4013-b006-45ea9db05e25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AJCR-Q1-25-2024-MATH-oficial.pdf
Size:
5.53 MB
Format:
Adobe Portable Document Format

Collections