An Evolutionary Algorithm and a Clustering Technique to Select Good Subsets of Test for Finite State Machines

dc.conference.title16th International Conference on Advances in Computational Collective Intelligence
dc.contributor.authorBenito Parejo, Miguel
dc.contributor.authorGarcía Merayo, María De Las Mercedes
dc.contributor.authorMéndez Hurtado, Manuel
dc.date.accessioned2025-04-10T14:11:07Z
dc.date.available2025-04-10T14:11:07Z
dc.date.issued2024-09-09
dc.description.abstractTesting is the technique most widely used to validate the correct behaviour of systems. Essentially, a test consists of applying an input to the system and decide whether it returns the expected output. Unfortunately, budget and temporal constraints limit the amount of testing that can be applied to the system. Therefore, a good selection of tests will reduce the resources devoted to testing while keeping an effective validation process. In this paper, we tackle this problem by using mutation testing, which effectively simulates the possible faults that the system under test may have and suggest which tests are best in finding potential faults. In order to perform test selection, we use a multi-objective genetic algorithm that focuses on two targets: minimising the number of inputs the test suite has to perform and maximising the mutation score. We have performed several experiments and exhaustively compared our proposal with a Machine Learning method, specifically clustering, which groups the tests into classes, from which we select the most suitable test to be applied.
dc.description.departmentDepto. de Sistemas Informáticos y Computación
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1007/978-3-031-70259-4\_13
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-70259-4\_13
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119489
dc.language.isoeng
dc.page.final182
dc.page.initial168
dc.relation.projectIDPID2021-122215NB-C31
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsembargoed access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordMutation Testing
dc.subject.keywordGenetic Algorithms
dc.subject.keywordClustering
dc.subject.keywordTest case selection
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleAn Evolutionary Algorithm and a Clustering Technique to Select Good Subsets of Test for Finite State Machines
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationa5fe4cf9-8928-45d4-8e32-5d1f846e5eb9
relation.isAuthorOfPublication28ca46b8-d1eb-42e6-a6e2-f31b193b055b
relation.isAuthorOfPublication74c73c62-45dd-4596-8953-1d4d04f1c008
relation.isAuthorOfPublication.latestForDiscoverya5fe4cf9-8928-45d4-8e32-5d1f846e5eb9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An Evolutionary Algorithm....pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections