Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Preserving the essential features in CNNs: pruning and analysis

dc.conference.date19-21 Jun 2024
dc.conference.placeA Coruña, España
dc.conference.title20th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2024
dc.contributor.authorLópez González, Clara Isabel
dc.contributor.authorGómez-Silva, María J.
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorPajares, Gonzalo
dc.date.accessioned2025-07-07T17:12:34Z
dc.date.available2025-07-07T17:12:34Z
dc.date.issued2024-06
dc.description© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
dc.description.abstractThe exceptional performance of Convolutional Neural Networks (CNNs) entails increasing requirements in computing power and storage. While several efficient compression methods have been developed, there is no consideration on which features are removed or preserved, which can affect pruning. In this paper, we propose a novel filter pruning strategy, named Layer Factor Analysis one to one (LFA1-1), that, relying on explainability, selects the filters that best retain the essential features underlying convolutional layers. We provide insights about the relevance of preserving these features and verify its relationship with compressed network’s performance. The explanatory analysis carried out allows us to justify pruning efficiency and detect problematic parts. Experiments with VGG-16 on CIFAR-10 are conducted in order to validate our approach. Quantitative and qualitative comparisons with methods in the literature uncover pruning properties and prove the effectiveness of our proposal, which reaches a 89.1% parameters and 83.8% FLOPs reduction with the lowest accuracy drop.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipEuropean Comission
dc.description.statuspub
dc.identifier.citationLópez-González, C.I., Gómez-Silva, M.J., Besada-Portas, E., Pajares, G. (2024). Preserving the Essential Features in CNNs: Pruning and Analysis. In: Alonso-Betanzos, A., et al. Advances in Artificial Intelligence. CAEPIA 2024. Lecture Notes in Computer Science(), vol 14640. Springer, Cham. https://doi.org/10.1007/978-3-031-62799-6_14
dc.identifier.doi10.1007/978-3-031-62799-6_14
dc.identifier.essn1611-3349
dc.identifier.isbn9783031627989
dc.identifier.isbn9783031627996
dc.identifier.issn0302-9743
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-62799-6_14
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-031-62799-6_14
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122286
dc.language.isoeng
dc.page.final141
dc.page.initial131
dc.relation.projectIDY2020/TCS-6420/IA-GES-BLOOM-CM/Hacia un sistema Integral para la Alerta y Gestión de BLOOMs de cianobacterias en aguas continentales
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/lPlan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-130123B-I00/ES/Más allá del uso de tecnologías digitales en blooms de cianobacterias: gestión inteligente de cianobacterias mediante el uso de gemelos digitales y computación en el borde/SMART-BLOOMS
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127648OB-C33/ES/COOPERACION DE VEHICULOS DE SUPERFICIE Y AEREOS PARA APLICACIONES DE INSPECCION EN ENTORNOS CAMBIANTES/
dc.rights.accessRightsrestricted access
dc.subject.cdu004.8
dc.subject.cdu004.85
dc.subject.cdu004.932
dc.subject.cdu004.032.26
dc.subject.keywordConvolutional Neural Networks
dc.subject.keywordExplainable Artificial Intelligence
dc.subject.keywordCompression Methods
dc.subject.keywordFactor Analysis
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.titlePreserving the essential features in CNNs: pruning and analysis
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preserving the Essential Features in CNNs.pdf
Size:
512.48 KB
Format:
Adobe Portable Document Format