Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Cosmic vector for dark energy: Constraints from supernovae, cosmic microwave background, and baryon acoustic oscillations

dc.contributor.authorLópez Maroto, Antonio
dc.contributor.authorBeltrán Jiménez, José
dc.contributor.authorLazkoz, Ruth
dc.date.accessioned2023-06-20T03:44:03Z
dc.date.available2023-06-20T03:44:03Z
dc.date.issued2009-07
dc.description© 2009 The American Physical Society. We would like to thank Eiichiro Komatsu for useful comments. J. B. is very grateful to the Department ofFisika Teorikoa of the EHU for their hospitality. This work has been supported by DGICYT (Spain) Project Nos. FPA 2004-02602 and FPA 2005-02327, UCMSantander PR34/07-15875, CAM/UCM 910309, and MEC grant BES-2006-12059.
dc.description.abstractIt has been recently shown that the presence of a vector field over cosmological scales could explain the observed accelerated expansion of the Universe without introducing either new scales or unnatural initial conditions in the early Universe, thus avoiding the coincidence problem. Here, we present a detailed analysis of the constraints imposed by supernova type Ia (SNIa), cosmic microwave background (CMB), and baryon acoustic oscillation (BAO) data on the vector dark energy model with general spatial curvature. We find that contrary to standard cosmology, CMB data exclude a flat universe for this model and, in fact, predict a closed geometry for the spatial sections. We see that CMB and SNIa Gold data are perfectly compatible at the 1-sigma level, however the SNIa Union data set exhibits a 3-sigma tension with CMB. The same level of tension is also found between SNIa and BAO measurements.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipUCM-Santander
dc.description.sponsorshipCAM/UCM
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26506
dc.identifier.doi10.1103/PhysRevD.80.023004
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.80.023004
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44341
dc.issue.number2
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.projectIDFPA 2004-02602
dc.relation.projectIDFPA 2005-02327
dc.relation.projectIDPR34/07-15875
dc.relation.projectID910309
dc.relation.projectIDBES-2006-12059
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordProbe Wmap Observations
dc.subject.keywordEquation-of-State
dc.subject.keywordCosmology
dc.subject.keywordConstant
dc.subject.keywordLambda
dc.subject.keywordSpace
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleCosmic vector for dark energy: Constraints from supernovae, cosmic microwave background, and baryon acoustic oscillations
dc.typejournal article
dc.volume.number80
dcterms.references[1] A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999). [2] A. G. Riess et al., Astrophys. J. 607, 665 (2004). [3] M. Kowalski et al., Astrophys. J. 686, 749 (2008). [4] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003); 170, 377 (2007); M. Tegmark et al., Phys. Rev. D 69, 103501 (2004). [5] C. Wetterich, Nucl. Phys. B302, 668 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998). [6] C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999). [7] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D 70, 043528 (2004). [8] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000). [9] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). [10] J. Beltrán Jiménez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008); arXiv:0807.2528. [11] V.V. Kiselev, Classical Quantum Gravity 21, 3323 (2004). [12] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07 (2004) 007; C. G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007); M. Novello et al., Phys. Rev. D 69,127301 (2004); T. Koivisto and D. F. Mota, Astrophys. J. 679 1 (2008). [13] J. Beltrán Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 03 (2009) 016; arXiv:0903.4672; J. Cosmol. Astropart. Phys. 02 (2009) 025; AIP Conf. Proc. 1122, 107 (2009). [14] E. L. Wright, Astrophys. J. 664, 633 (2007); R. Lazkoz, S. Nesseris, and L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 07 (2008) 012; D. Rubin et al., Astrophys. J. 695, 391 (2009). [15] S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005). [16] W. J. Percival et al., Mon. Not. R. Astron. Soc. 381, 1053 (2007). [17] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998). [18] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009). [19] Y. Wang and P. Mukherjee, Phys. Rev. D 76, 103533 (2007); E. L. Wright, Astrophys. J. 664, 633 (2007). [20] W. Hu and N. Sugiyama, Astrophys. J. 471, 542 (1996). [21] E.V. Linder and G. Robbers, J. Cosmol. Astropart. Phys. 06 (2008) 004; F. De Bernardis, R. Bean, S. Galli, A. Melchiorri, J. I. Silk, and L. Verde, Phys. Rev. D 79, 043503 (2009).
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MarotoAL27libre.pdf
Size:
712.56 KB
Format:
Adobe Portable Document Format

Collections