Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the character variety of tunnel number 1 knots

Loading...
Thumbnail Image

Full text at PDC

Publication date

2000

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
Citations
Google Scholar

Citation

Abstract

Given a hyperbolic knot K in S3, the SL2(C) characters ofπ1(S3−K) form an algebraic variety Cˆ(K). The algebraic component containing the character of the complete hyperbolic structure of S3−K is an algebraic curve CˆE(K). The desingularization of the projective curve corresponding to CˆE(K) is a Riemann surface Σ(K), and the trace function corresponding to the meridian of K induces a map p:Σ(K)→C. The pair (Σ(K),p) contains a great deal of information about the knot K and its hyperbolic structure. It can be described by a polynomial rE[K](y,z). There is an algebraic number yh which is a particular critical point of p in the interval (−2,2). It defines an angle 0<αh<2π with yh=2cos(αh/2), called the limit of hyperbolicity. The minimal polynomial hK(y) of yh is called the h-polynomial of K. The calculation of these invariants is in general quite complicated. In this paper the authors develop a method to calculate rE[K](y,z) and hK(y) for any tunnel number one knot, and they apply the method to the knots 10139 and 10161.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections