Copies of l∞ in Lp(μ;X).
dc.contributor.author | Mendoza Casas, José | |
dc.date.accessioned | 2023-06-20T17:01:58Z | |
dc.date.available | 2023-06-20T17:01:58Z | |
dc.date.issued | 1990-05 | |
dc.description.abstract | Let (Ω,Σ,μ) be any measure space, X a Banach space and for 1≤p<+∞ let Lp(μ,X) be the Banach space of all X-valued Bochner "pth power integrable'' functions on Ω, with the usual "Lp''-norm. A natural question is: do properties enjoyed by Lp(μ,X) "descend'' to X? In the present paper it is proved that Lp(μ,X) contains l∞ isomorphically (if and) only if X does. In a sense, the author's result completes earlier ones [e.g., S. Kwapien, Studia Math. 52 (1974), 187–188; G. Pisier, C. R. Acad. Sci. Paris Sér. A 286 (1978), no. 17, 747–749; ; L. Drewnowski, "Copies of l∞ in the operator spaces Kω∗(X∗,Y)'', to appear]. The proof of the theorem is achieved by applying three earlier results; one is from the paper of Drewnowski [op. cit.], and the other two from a paper by H. P. Rosenthal [Studia Math. 37 (1970), 13–36]. Another recent paper by Drewnowski ["When does ca(Σ,X) contain a copy of l∞ or c0?'', Proc. Amer. Math. Soc., to appear] is also relevant to the present paper. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16888 | |
dc.identifier.doi | 10.2307/2048371 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.officialurl | http://www.jstor.org/stable/2048371?seq=3 | |
dc.identifier.relatedurl | http://www.jstor.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57658 | |
dc.issue.number | 1 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 127 | |
dc.page.initial | 125 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.5 | |
dc.subject.keyword | Bochner-integrable functions | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | Copies of l∞ in Lp(μ;X). | |
dc.type | journal article | |
dc.volume.number | 109 | |
dcterms.references | J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, RI, 1977. L. Drewnowski, Copies of l∞ in the operator space Kw∗(X∗,Y), (to appear). N. Dunford and J. T. Schwartz, Linear operators, vol. I. New York, Interscience, 1955. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. S. Kwapien, Sur les espaces de Banach contenant c0, Studia Math. 52 (1974), 187-188. S. Lang, Analysis II, Addison-Wesley, Reading, MA, 1969. G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l1, C. R. Acad. Sci. Paris Sér. A 286 (1978), 747-749. H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-16 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3fdf00ed-ed02-482c-a736-bb87c2753a89 | |
relation.isAuthorOfPublication.latestForDiscovery | 3fdf00ed-ed02-482c-a736-bb87c2753a89 |
Download
Original bundle
1 - 1 of 1