Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Copies of l∞ in Lp(μ;X).

dc.contributor.authorMendoza Casas, José
dc.date.accessioned2023-06-20T17:01:58Z
dc.date.available2023-06-20T17:01:58Z
dc.date.issued1990-05
dc.description.abstractLet (Ω,Σ,μ) be any measure space, X a Banach space and for 1≤p<+∞ let Lp(μ,X) be the Banach space of all X-valued Bochner "pth power integrable'' functions on Ω, with the usual "Lp''-norm. A natural question is: do properties enjoyed by Lp(μ,X) "descend'' to X? In the present paper it is proved that Lp(μ,X) contains l∞ isomorphically (if and) only if X does. In a sense, the author's result completes earlier ones [e.g., S. Kwapien, Studia Math. 52 (1974), 187–188; G. Pisier, C. R. Acad. Sci. Paris Sér. A 286 (1978), no. 17, 747–749; ; L. Drewnowski, "Copies of l∞ in the operator spaces Kω∗(X∗,Y)'', to appear]. The proof of the theorem is achieved by applying three earlier results; one is from the paper of Drewnowski [op. cit.], and the other two from a paper by H. P. Rosenthal [Studia Math. 37 (1970), 13–36]. Another recent paper by Drewnowski ["When does ca(Σ,X) contain a copy of l∞ or c0?'', Proc. Amer. Math. Soc., to appear] is also relevant to the present paper.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16888
dc.identifier.doi10.2307/2048371
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.jstor.org/stable/2048371?seq=3
dc.identifier.relatedurlhttp://www.jstor.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57658
dc.issue.number1
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isoeng
dc.page.final127
dc.page.initial125
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu517.5
dc.subject.keywordBochner-integrable functions
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleCopies of l∞ in Lp(μ;X).
dc.typejournal article
dc.volume.number109
dcterms.referencesJ. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys No. 15, Amer. Math. Soc., Providence, RI, 1977. L. Drewnowski, Copies of l∞ in the operator space Kw∗(X∗,Y), (to appear). N. Dunford and J. T. Schwartz, Linear operators, vol. I. New York, Interscience, 1955. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. S. Kwapien, Sur les espaces de Banach contenant c0, Studia Math. 52 (1974), 187-188. S. Lang, Analysis II, Addison-Wesley, Reading, MA, 1969. G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l1, C. R. Acad. Sci. Paris Sér. A 286 (1978), 747-749. H. P. Rosenthal, On relatively disjoint families of measures with some applications to Banach space theory, Studia Math. 37 (1970), 13-16
dspace.entity.typePublication
relation.isAuthorOfPublication3fdf00ed-ed02-482c-a736-bb87c2753a89
relation.isAuthorOfPublication.latestForDiscovery3fdf00ed-ed02-482c-a736-bb87c2753a89

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mendoza13.pdf
Size:
110.9 KB
Format:
Adobe Portable Document Format

Collections