Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Prediction of MHC class I binding peptides using profile motifs

dc.contributor.authorReche Gallardo, Pedro Antonio
dc.contributor.authorGlutting, John-Paul
dc.contributor.authorReinherz, Ellis L
dc.date.accessioned2023-06-20T17:26:34Z
dc.date.available2023-06-20T17:26:34Z
dc.date.issued2002
dc.description.abstractPeptides that bind to a given major histocompatibility complex (MHC) molecule share sequence similarity. Therefore, a position specific scoring matrix (PSSM) or profile derived from a set of peptides known to bind to a specific MHC molecule would be a suitable predictor of whether other peptides might bind, thus anticipating possible T-cell epitopes within a protein. In this approach, the binding potential of any peptide sequence (query) to a given MHC molecule is linked to its similarity to a group of aligned peptides known to bind to that MHC, and can be obtained by comparing the query to the PSSM. This article describes the derivation of alignments and profiles from a collection of peptides known to bind a specific MHC, compatible with the structural and molecular basis of the peptide-MHC class I (MHCI) interaction. Moreover, in order to apply these profiles to the prediction of peptide-MHCI binding, we have developed a new search algorithm (RANKPEP) that ranks all possible peptides from an input protein using the PSSM coefficients. The predictive power of the method was evaluated by running RANKPEP on proteins known to bear MHCI K(b)- and D(b)-restricted T-cell epitopes. Analysis of the results indicates that > 80% of these epitopes are among the top 2% of scoring peptides. Prediction of peptide-MHC binding using a variety of MHCI-specific PSSMs is available on line at our RANKPEP web server (www.mifoundation.org/Tools/rankpep.html). In addition, the RANKPEP server also allows the user to enter additional profiles, making the server a powerful and versatile computational biology benchmark for the prediction of peptide-MHC binding.
dc.description.departmentDepto. de Inmunología, Oftalmología y ORL
dc.description.facultyFac. de Medicina
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/9339
dc.identifier.issn0198-8859
dc.identifier.officialurlhttp://www.sciencedirect.com/humimm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58246
dc.issue.number9
dc.journal.titleHuman Immunology
dc.language.isoeng
dc.page.final9
dc.page.initial701
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.keywordPSSM
dc.subject.keywordProfile
dc.subject.keywordEpitopes
dc.subject.keywordMHC
dc.subject.keywordPrediction
dc.subject.ucmInmunología
dc.subject.ucmBioinformática
dc.subject.unesco2412 Inmunología
dc.titlePrediction of MHC class I binding peptides using profile motifs
dc.typejournal article
dc.volume.number63
dspace.entity.typePublication
relation.isAuthorOfPublication372eb700-f6f8-4156-80f5-b8f7c9edafe1
relation.isAuthorOfPublication.latestForDiscovery372eb700-f6f8-4156-80f5-b8f7c9edafe1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
18.Reche_etal_HI_2002.pdf
Size:
370.43 KB
Format:
Adobe Portable Document Format

Collections