Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Multivariate orthogonal polynomials and integrable systems

dc.contributor.authorAriznabarreta, Gerardo
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-17T21:48:15Z
dc.date.available2023-06-17T21:48:15Z
dc.date.issued2016-10-16
dc.description© Elsevier 2016. GA thanks economical support from the Universidad Complutense de Madrid Program “Ayudas para Becas y Contratos Complutenses Predoctorales en España 2011”. MM thanks economical support from the Spanish “Ministerio de Economía y Competitividad” research project MTM2012-36732-C03-01, Ortogonalidad y aproximación; teoría y aplicaciones.
dc.description.abstractMultivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.sponsorshipPrograma “Ayudas para Becas y Contratos Complutenses Predoctorales en España 2011”
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40377
dc.identifier.doi10.1016/j.aim.2016.06.029
dc.identifier.issn0001-8708
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.aim.2016.06.029
dc.identifier.relatedurlhttps://arxiv.org/abs/1409.0570
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17560
dc.journal.titleAdvances in mathematics
dc.language.isoeng
dc.page.final739
dc.page.initial628
dc.publisherElsevier
dc.relation.projectIDMTM2012- 36732-C03-01
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordMultivariate orthogonal polynomials
dc.subject.keywordBorel-Gauss factorization
dc.subject.keywordQuasi-determinants
dc.subject.keywordChristoffel-Darboux kernels
dc.subject.keywordDarboux transformations
dc.subject.keywordChristoffel formula
dc.subject.keywordQuasi-tau matrices
dc.subject.keywordKernel polynomials
dc.subject.keywordIntegrable hierarchies
dc.subject.keywordToda equations
dc.subject.keywordKP equations
dc.subject.ucmFísica matemática
dc.titleMultivariate orthogonal polynomials and integrable systems
dc.typejournal article
dc.volume.number302
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas72preprint.pdf
Size:
795.86 KB
Format:
Adobe Portable Document Format

Collections