Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Regularization of Hele-Shaw flows, multiscaling expansions and the Painlevé I equation

dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T04:00:20Z
dc.date.available2023-06-20T04:00:20Z
dc.date.issued2009-08-15
dc.description©2008 Elsevier Ltd. All rights reserved. The authors wish to thank the Spanish Ministerio de Educación y Ciencia (research project FIS2005-00319) and the European Science Foundation (MISGAM programme) for their support.
dc.description.abstractCritical processes of ideal integrable models of Hele-Shaw flows are considered. A regularization method based on multiscaling expansions of solutions of the KdV and Toda hierarchies characterized by string equations is proposed. Examples are exhibited in which the tritronquee solution of the Painleve-I equation turns out to provide the leading term of the regularization.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Educación y Ciencia
dc.description.sponsorshipEuropean Science Foundation (MISGAM programme)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34238
dc.identifier.doi10.1016/j.chaos.2008.05.020
dc.identifier.issn0960-0779
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.chaos.2008.05.020
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.relatedurlhttp://arxiv.org/abs/0710.3731
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44793
dc.issue.number3
dc.journal.titleChaos solitons & Fractals
dc.language.isoeng
dc.page.final1293
dc.page.initial1284
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.projectIDFIS2005-00319
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordKorteweg-devries equation
dc.subject.keywordSmall dispersion limit
dc.subject.keywordIntegrable hierarchies
dc.subject.keywordGravity
dc.subject.keywordDynamics
dc.subject.keywordStrings
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleRegularization of Hele-Shaw flows, multiscaling expansions and the Painlevé I equation
dc.typejournal article
dc.volume.number41
dcterms.references[1] M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 84, 5106 (2000) [2] P. W. Wiegmann and P. B. Zabrodin, Comm. Math. Phys. 213 , 523 (2000) [3] I. Krichever, M. Mineev-Weinstein, P. Wiegmann and A. Zabrodin, Physica D 198, 1 (2004) [4] R. Teodorescu, P. Wiegmann and A. Zabrodin, Phys. Rev. Lett. 95, 044502 (2005) [5] E. Bettelheim, P. Wiegmann, O. Agam and A. Zabrodin, Phys. Rev. Lett. 95, 244504 (2005) [6] S-Y. Lee, E. Bettelheim and P. Wiegmann, Physica D 219, 23(2006) [7] P. Di Francesco, P. Ginsparg and Z. Zinn-Justin, Phys. Rept. 254,1 (1995) [8] E. Brezin and V. Kazakov, Phys. Lett. B 236, 144 (1990) [9] M. Douglas and S. Shenker, Nuc. Phys. B 335, 635 (1990) [10] D. Gross and A. Migdal, Phys. Rev. Lett. 64, 127 (1990) [11] A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38(2), 291 (1974) [12] P. D. Lax and C. D. Levermore, Comm. Pure a Appl. Math. 36 253, 571, 809 (1983) [13] P. Deift, S. Venakides and X. Zhou, IMRN 6, 285 (1997) [14] P. van Moerbeke, Integrable Foundations of String Theory, Proceedings of the CIMPA- school, Ed.: O. Babelon, P. Cartier and Y. Kosmann-Schwarzbach, World Scientific, 163 (1994) [15] E. Witten, Nuc. Phys. B 340, 281 (1990) [16] E. Witten, Surv. in Diff. Geom. 1, 243 (1991) [17] M. Kontsevich, Comm. Math. Phys. 147, 1 (1992) [18] B. Dubrovin and Y. Zhang, Normal forms of integrable PDEs, Frobenious manifolds and Gromo-Witten invariants arXiv:math/0108160 [19] T. Grava and C. Klein, Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations arXiv:math-ph/0511011 [20] T. Grava and C. Klein, Numerical study of a multiscale expansion of KdV and Camassa- Holm equation arXiv:math-ph/0702038 [21] K. Takasaki and T. Takebe, Rev. Math. Phys. 7, 743 (1995) [22] L. Martínez Alonso y E. Medina, Phys. Lett. B 641, 466 (2006) [23] L. Martínez Alonso and E. Medina, Semiclassical expansions in the Toda hierarchy and the hermitian matrix model, arXiv:0706.0592 [nlin.Si]. To appear in J. Phys. A: Math. Gen. [24] L. Mart´ınez Alonso and E. Medina, A common integrable structure in the hermitian matrix model and Hele-Shaw flows, arXiv:0710.2798 [nlin.Si]. [25] P. Boutroux, Ann.Ecole Norm, 30, 265 (1913) [26] M. Slemrod, European J. Appl. Math. 13, 663 (2002) [27] B. Dubrovin, T. Grava and C. Klein, On universality of critical behaviour in the focusing nonlinear Schõdinger equation, elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation arXiv:0704.0501[math.AP]15 May 2007 [28] A. Kapaev, J. Phys. A: Math. Gen. 37, 11149 (2004) [29] N. Joshi and A. Kitaev, Stud. Appl. Math. 107, 253 (2001)
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso12preprint.pdf
Size:
226.06 KB
Format:
Adobe Portable Document Format

Collections