Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A novel approach in mechanical nanostructuring synthesis of metal hydride: Hydrogen sorption enhancement by High Pressure Torsion Extrusion

dc.contributor.authorOmranpour Shahreza, Babak
dc.contributor.authorIvanisenko, Julia
dc.contributor.authorSergejev, Fjodor
dc.contributor.authorOmranpour, Hosseinali
dc.contributor.authorHuot, Jacques
dc.date.accessioned2024-07-08T16:55:36Z
dc.date.available2024-07-08T16:55:36Z
dc.date.issued2024-01
dc.description.abstractIn this study, we evaluated the influence of a new mechanical nanostructuring technique called High Pressure Torsion Extrusion (HPTE) on the microstructural evolution of niobium and the subsequent effects on the mechanical properties and hydrogen storage behaviour. Two different regimes with the extrusion speeds of ν = 7 mm/min and ν = 10 mm/min were implemented in the experiments. A remarkable microstructural refinement and increase in hardness were achieved after one pass of HPTE. The initial grain size of 16.5 μm decreased to 600 nm and the initial hardness of 80 Hv increased to 284 Hv. Using a Sievert apparatus, it was found that the HPTE processed sample could absorb hydrogen to its full capacity within about 6 h while the as-received sample did not absorb even after one day of exposure to hydrogen gas. Rate limiting step modelling of the hydrogen absorption revealed that the absorption is a 3-dimensional diffusion-controlled reaction with a constant or decreasing interface velocity, depending on the HPTE regime.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.fundingtypeDescuento UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationBabak Omranpour Shahreza, Julia Ivanisenko, Fjodor Sergejev, Hosseinali Omranpour, Jacques Huot. A novel approach in mechanical nanostructuring synthesis of metal hydride: Hydrogen sorption enhancement by High Pressure Torsion Extrusion. International Journal of Hydrogen Energy. Volume 51, Part A. 2024. Pages 133-142.
dc.identifier.doi10.1016/j.ijhydene.2023.10.343
dc.identifier.issn0360-3199
dc.identifier.officialurlhttps://doi.org/10.1016/j.ijhydene.2023.10.343
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0360319923056033
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105814
dc.issue.numberPart A
dc.journal.titleInternational Journal of Hydrogen Energy
dc.language.isoeng
dc.page.final142
dc.page.initial133
dc.publisherElsevier
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu66.0
dc.subject.keywordHydrogen storage
dc.subject.keywordMetal hydrides
dc.subject.keywordMicrostructure
dc.subject.keywordAbsorption kinetics
dc.subject.ucmCiencias
dc.subject.ucmIngeniería química
dc.subject.ucmMateriales
dc.subject.unesco23 Química
dc.subject.unesco3303 Ingeniería y Tecnología Químicas
dc.subject.unesco3312 Tecnología de Materiales
dc.titleA novel approach in mechanical nanostructuring synthesis of metal hydride: Hydrogen sorption enhancement by High Pressure Torsion Extrusion
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number51
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A novel approach in mechanical nanostructuring synthesis of metal hydride.pdf
Size:
8.35 MB
Format:
Adobe Portable Document Format

Collections