Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Remarks on a basic law for dynamic crack propagation

dc.contributor.authorOleaga Apadula, Gerardo Enrique
dc.date.accessioned2023-06-20T17:04:49Z
dc.date.available2023-06-20T17:04:49Z
dc.date.issued2001-10
dc.description.abstractA basic law of motion for a dynamic crack propagating in a brittle material is derived in the case of two space dimensions. The only basic assumptions for this purpose are the energy conservation law and a variational inequality following the well known Hamilton's principle. Our study is developed within Griffith's framework, that is under the assumption that crack surface energy is proportional to crack length. It is shown that the speed and direction of the crack can be found without further assumptions. Moreover, the corresponding law is local, and if expressed in terms of the stress intensity factors yields the principle of local symmetry previously proposed for quasi-static evolution.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17265
dc.identifier.doi10.1016/S0022-5096(01)00048-5
dc.identifier.issn0022-5096
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022509601000485
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57737
dc.issue.number10
dc.journal.titleJournal of the Mechanics and Physics of Solids
dc.language.isoeng
dc.page.final2306
dc.page.initial2273
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986
dc.subject.keywordDynamic fracture
dc.subject.keywordVariational principles
dc.subject.keywordConfigurational forces
dc.subject.keywordDynamic crack propagation
dc.subject.keywordGriffith's crack
dc.subject.keywordBrittle material
dc.subject.keywordEnergy conservation
dc.subject.keywordVariational inequality
dc.subject.keywordHamilton's principle
dc.subject.keywordCrack surface
dc.subject.keywordStress intensity factors
dc.subject.keywordPrinciple of local symmetry
dc.subject.ucmFunciones (Matemáticas)
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleRemarks on a basic law for dynamic crack propagation
dc.typejournal article
dc.volume.number49
dcterms.referencesAdda-Bedia, M., Arias, R., Ben Amar, M., Lund, F., 1999. Generalized Gri3th criterion for dynamic fracture and the stability of crack motion at high velocities.Phys.Rev.E 60 (2), 2366–2376. Cherepanov, G.P., 1967.Crack Propagation in Continuous Media, P.M.M.J.Appl.Math.Mech. 31 (3), 503-512. Cotterell, B., Rice, J.R., 1980.Slightly curved or kinked cracks.Int.J.Fracture 16, p 155. Eshelby, J.D., 1956.The Continuum Theory of Lattice Defects.Solid State Physics, Vol.3, Academic Press, New York. Eshelby, J.D., 1970. Energy relations and the energy-momentum tensor in continuum mechanics. Inelastic Behaviour of Solids. McGraw-Hill, New York. Freund, L.B., 1972.Energy Qux into the tip of an extending crack in an elastic solid.J.Elasticity 2 (4), 341–349. Freund, L.B., 1990. Dynamic Fracture Mechanics. Cambridge University Press, Cambridge. Gurtin, M.E., Podio-Guidugli, P., 1996. ConDgurational forces and the basic laws for crack propagation. J.Mech. Phys. Solids 44 (6), 905–927. Gurtin, M.E., Podio-Guidugli, P., 1998. ConDgurational forces and a constitutive theory for crack propagation that allows for kinking and curving.J.Mech.Phys.Solids 46 (8), 1343–1378. Gurtin, M.E., Yatomi, C., 1980. On the energy release rate in elastodynamic crack propagation. Arch. Rat. Mech.Anal.74, pp 231–247. Lanczos, C., 1949.The Variational Principles of Mechanics.University of Toronto Press, Toronto. Maugin, G., 1993.Material Inhomogeneities in Elasticity.Applied Mathematics and Mathematical Computation, Vol.3.Chapman & Hall, London. Rice, J.R., 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks.J.Appl.Mech.35, 379. SKanchez Palencia, E., 1980.Non Homogeneous Media and Vibration Theory.Springer, Berlin. Sih, G.C., 1973. Mechanics of Fracture, Introductory Chapter: A Special Theory of Crack Propagation, Vol. 1.NoordhoN Int, Leiden. Slepyan, L.I. , 1993.Principle of maximum energy dissipation rate in crack dynamics .J.Mech.Phys.Solids 41 (6), 1019– 1033. Stumpf, H., Le, K.C., 1990. Variational principles of nonlinear fracture mechanics. Acta Mechanica 83, 25–37. Stumpf, H., Le, K.C., 1992. Variational formulation of the crack problem for an elastoplastic body at Dnite strain.Z.Angew.Math.Mech.72 (9), 387–396. Willis, J.R., 1975. Equations of motion for propagating cracks. In: Knott, J.F., Smith, R. (Eds.) The Mechanics and Physics of Fracture.The Metals Society, London, pp.57– 67. Willis, J.R., Movchan, A.B., 1997. Three-dimensional dynamic perturbation of a propagating crack. J. Mech. Phys.Solids 45 (4), 591–610. YoNe, E.,1951. The moving Gri3th crack.Philos.Mag.42, 739-750.
dspace.entity.typePublication
relation.isAuthorOfPublication8a7b6bff-4e63-42ed-bb95-31a089c7d57f
relation.isAuthorOfPublication.latestForDiscovery8a7b6bff-4e63-42ed-bb95-31a089c7d57f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ole07.pdf
Size:
307.4 KB
Format:
Adobe Portable Document Format

Collections