Nuclear embeddings of Besov spaces into Zygmund spaces

dc.contributor.authorCobos Díaz, Fernando
dc.contributor.authorEdmunds, David E.
dc.contributor.authorKühn, Tomas
dc.date.accessioned2023-06-17T13:35:52Z
dc.date.available2023-06-17T13:35:52Z
dc.date.issued2019
dc.description.abstractLet d ∈ N and let Ω be a bounded Lipschitz domain in Rd. We prove that the embedding Id : Bd (Ω) −→ L (log L) (Ω) is nuclear if a < −1 and 1 ≤ p, q ≤ ∞,p,q ≤∞, while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ while if −1 < a < 0, 2 < p < ∞ and p ≤ q ≤ ∞ the embedding Id fails to be nuclear. Furthermore, if a = −1, the embedding Id : Bd∞,∞(Ω) −→ L∞ (log L)−1 (Ω) is not nuclear.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)/Fondo Europeo de Desarrollo Regional
dc.description.statusinpress
dc.eprint.idhttps://eprints.ucm.es/id/eprint/58106
dc.identifier.issn1069-5869
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13826
dc.journal.titleJournal of Fourier analysis and applications
dc.language.isospa
dc.publisherSpringer
dc.relation.projectIDMTM2017-84058-P
dc.rights.accessRightsopen access
dc.subject.cdu517
dc.subject.keywordAnálisis matemático
dc.subject.keywordEspacios de Besov
dc.subject.keywordEspacios de Zygmund
dc.subject.keywordBesov spaces
dc.subject.keywordZygmund spaces
dc.subject.keywordNuclear embeddings
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleNuclear embeddings of Besov spaces into Zygmund spacesen
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublicationad35279f-f928-4b72-a5bd-e422662ac4c1
relation.isAuthorOfPublication.latestForDiscoveryad35279f-f928-4b72-a5bd-e422662ac4c1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cobos114.pdf
Size:
319.62 KB
Format:
Adobe Portable Document Format

Collections