Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors

dc.contributor.authorMiranda Pantoja, José Miguel
dc.contributor.authorSebastián Franco, José Luis
dc.date.accessioned2023-06-20T18:56:00Z
dc.date.available2023-06-20T18:56:00Z
dc.date.issued1999-09
dc.description© 1999 IOP Publishing Ltd. This work has been funded by the European Community through programme TMR (project ERBFMRXCT960050). The authors wish to thank Dr Tomás González from the University of Salamanca for his helpful comments.
dc.description.abstractThis paper presents a procedure to improve the algorithm of Sangiorgi, Ricco and Venturi for the calculation of the time of flight in Monte Carlo simulations. The method is used to efficiently optimize the step function in which the total scattering probability is discretized. The optimization criterion suggested in this work can reduce the self-scattering events to less than 30% in a fairly wide range of temperatures, applied fields and doping levels. Different examples are presented to illustrate the advantages of the method.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Community through programme TMR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24742
dc.identifier.doi10.1088/0268-1242/14/9/310
dc.identifier.issn0268-1242
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0268-1242/14/9/310
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58951
dc.issue.number9
dc.journal.titleSemiconductor Science and Technology
dc.language.isoeng
dc.page.final808
dc.page.initial804
dc.publisherIop Publishing Ltd
dc.relation.projectIDERBFMRXCT960050
dc.rights.accessRightsrestricted access
dc.subject.cdu537
dc.subject.keywordTechnologically Significant Semiconductors
dc.subject.keywordSchotiky-Barrier Diodes
dc.subject.keywordZincblende Structures
dc.subject.keywordNoise
dc.subject.keywordDiamond
dc.subject.keywordSpectra
dc.subject.keywordDevices.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleInfluence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors
dc.typejournal article
dc.volume.number14
dcterms.references[1] González, T., Pardo, D., Varani, L., Reggiani, L., 1993, "Monte Carlo analysis of noise spectra in Schottky-barrier diodes", Appl. Phys. Lett., 63 (22), 3040–2. [2] Starikov, E., Shiktorov, P., Gruzinskis, V., Varani, L., Vaissiere, J.C., Nougier, J.P., Reggiani, L., 1996, "Monte Carlo calculation of noise and small-signal impedance spectra in submicrometer GaAs n+nn+ diodes", J. Appl. Phys., 79 (1), 242–52. [3] González, T., Pardo, D., Varani, L., Reggiani, L., 1994, "A microscopic interpretation of hot-electron noise in Schottky barrier diodes", Semicond. Sci. Technol., 9, 580–3. [4] González, T., Pardo, D., Varani, L., Reggiani, L., 1995, "Monte Carlo analysis of the behavior and spatial origin of electronic noise in GaAs MESFET’s", IEEE Trans. Electron Devices, 42 (5), 991–8. [5] Nougier, J.P., 1994, "Fluctuations and noise of hot carriers in semiconductor materials and devices", IEEE Trans. Electron Devices, 41 (11), 2034–49. [6] Rees, H.D., 1968, "Calculation of steady state distribution functions by exploiting stability", Phys. Lett. A, 26 (9), 416–17. [7] Hockney, R.W., Eastwood, J.W., 1988, "Computer Simulation Using Particles" (Bristol: Institute of Physics Publishing). [8] Yorston, R.M., 1986, "Free-flight time generation in the Monte Carlo simulation of carrier transport in semiconductors", J. Comput. Phys., 64, 177–94. [9] Sangiorgi, E., Riccó, B., Venturi, F., 1988, "MOS2: an efficient Monte Carlo simulator for MOS devices", IEEE Trans. on CAD, 7, 259–71. [10] Adachi, S., 1992, "Physical Properties of III–V Semiconductor Compounds" (New York: Wiley). [11] Fischetti, M.V., 1991, "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures—part I: homogeneous transport", IEEE Trans. Electron Devices, 38 (3), 634–49. [12] Jacoboni, C., Reggiani, L., 1983, "The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials", Rev. Mod. Phys., 55 (3), 645–705. [13] González, T., Velazque, J.E., Guttierrez, P.M., Pardo, D., 1991, "Five-valley model for the study of electron transport properties at very high electric fields in GaAs", Semicond. Sci. Technol., 6, 862–71. [14] González, T., Velazque, J.E., Guttierrez, P.M., Pardo, D., 1992, "Electron transport in InP under high electric field conditions", Semicond. Sci. Technol., 7, 31–6. [15] Fischetti, M.V., 1991, "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures—part II: submicrometer MOSFET’s", IEEE Trans. Electron Devices, 38 (3), 650–60. [16] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1995, "Numerical Recipes in C: The Art of Scientific Computing", 2nd edn, (Cambridge: Cambridge University Press). [17] Pantoja, J.M., Sebastián, J.L., Muñoz, S., 1998, "Intrinsic limitations of GaAs device cooling for microwave low noise applications", Proc. IEEE Trans. Microwave Theory and Techniques Symp., (Baltimore, 1998). [18] Pantoja, J.M., Lin, C.I., Shaalan, M., Sebastián, J.L., Hartnagel, H.L., "Limitations of GaAs and InP device cooling for microwave low noise operation", IEEE Trans. Microwave Theory and Techniques submitted. [19] Jacoboni, C., Lugli, P., 1989, "The Monte Carlo Method for Semiconductor Device Simulation", (Vienna: Springer). [20] Pantoja, J.M., Sebastián, J.L., 1997, "Monte Carlo simulation of electron velocity in degenerate GaAs", IEEE Trans. Electron Device Lett., 18 (6), 258–60.
dspace.entity.typePublication
relation.isAuthorOfPublication328f9716-2012-44f9-aacc-ef8d48782a77
relation.isAuthorOfPublication53e43c76-7bce-46fd-9520-0edb4620c996
relation.isAuthorOfPublication.latestForDiscovery328f9716-2012-44f9-aacc-ef8d48782a77

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MirandaJM106.pdf
Size:
167.49 KB
Format:
Adobe Portable Document Format

Collections