On a problem of topologies in infinite dimensional holomorphy
dc.contributor.author | Martínez Ansemil, José María | |
dc.contributor.author | Taskinen, J. | |
dc.date.accessioned | 2023-06-20T17:01:03Z | |
dc.date.available | 2023-06-20T17:01:03Z | |
dc.date.issued | 1990 | |
dc.description.abstract | The authors solve an interesting open problem concerning the equivalence of the compact-open topology τ0 and the Nachbin ported topology τω on spaces of holomorphic functions. (See, for example, the book by S. Dineen [Complex analysis in locally convex spaces, North-Holland, Amsterdam, 1981; MR0640093 (84b:46050)] for background.) Let H(U) denote the space of complex-valued holomorphic functions on an open subset U of a complex Fréchet-Montel space F. Ansemil and S. Ponte [Arch. Math. (Basel) 51 (1988), no. 1, 65–70; MR0954070 (90a:46109)] showed that these two topologies agree on H(U) for balanced U if and only if, for every natural number n, P(nF) is a Montel space. Using this result, they showed that for balanced open subsets U of certain non-Schwartz, Fréchet-Montel spaces, τ0=τω. Earlier, J. Mujica [J. Funct. Anal. 57 (1984), no. 1, 31–48; MR0744918 (86c:46050)] had shown that τ0=τω for Fréchet-Schwartz spaces. It is not hard to see that the two topologies differ if F is not Montel. The authors' counterexample is the Fréchet-Montel space F of Taskinen [Studia Math. 91 (1988), no. 1, 17–30; MR0957282 (89k:46087)]. The authors observe that the complete symmetric projective tensor product Fs⊗ˆπF contains an isomorphic copy of l1. Consequently, P(2F) cannot be Montel, and the result follows. | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16819 | |
dc.identifier.citation | Martínez Ansemil, J. M. & Taskinen, J. «On a Problem of Topologies in Infinite Dimensional Holomorphy». Archiv Der Mathematik, vol. 54, n.o 1, enero de 1990, pp. 61-64. DOI.org (Crossref), https://doi.org/10.1007/BF01190669. | |
dc.identifier.doi | 10.1007/BF01190669 | |
dc.identifier.issn | 0003-889X | |
dc.identifier.officialurl | https//doi.org/10.1007/BF01190669 | |
dc.identifier.relatedurl | http://www.springerlink.com/content/v40ml80035672677/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57631 | |
dc.issue.number | 1 | |
dc.journal.title | Archiv der Mathematik | |
dc.language.iso | eng | |
dc.page.final | 64 | |
dc.page.initial | 61 | |
dc.publisher | Birkhäuser Verlag | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Fréchet-Montel space | |
dc.subject.keyword | Compact open topology | |
dc.subject.keyword | Nachbin topology | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On a problem of topologies in infinite dimensional holomorphy | en |
dc.type | journal article | |
dc.volume.number | 54 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d | |
relation.isAuthorOfPublication.latestForDiscovery | e94d6c20-a1ea-4d41-aa71-df8bbd1ad67d |
Download
Original bundle
1 - 1 of 1