Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On a problem of topologies in infinite dimensional holomorphy

dc.contributor.authorMartínez Ansemil, José María
dc.contributor.authorTaskinen, J.
dc.date.accessioned2023-06-20T17:01:03Z
dc.date.available2023-06-20T17:01:03Z
dc.date.issued1990
dc.description.abstractThe authors solve an interesting open problem concerning the equivalence of the compact-open topology τ0 and the Nachbin ported topology τω on spaces of holomorphic functions. (See, for example, the book by S. Dineen [Complex analysis in locally convex spaces, North-Holland, Amsterdam, 1981; MR0640093 (84b:46050)] for background.) Let H(U) denote the space of complex-valued holomorphic functions on an open subset U of a complex Fréchet-Montel space F. Ansemil and S. Ponte [Arch. Math. (Basel) 51 (1988), no. 1, 65–70; MR0954070 (90a:46109)] showed that these two topologies agree on H(U) for balanced U if and only if, for every natural number n, P(nF) is a Montel space. Using this result, they showed that for balanced open subsets U of certain non-Schwartz, Fréchet-Montel spaces, τ0=τω. Earlier, J. Mujica [J. Funct. Anal. 57 (1984), no. 1, 31–48; MR0744918 (86c:46050)] had shown that τ0=τω for Fréchet-Schwartz spaces. It is not hard to see that the two topologies differ if F is not Montel. The authors' counterexample is the Fréchet-Montel space F of Taskinen [Studia Math. 91 (1988), no. 1, 17–30; MR0957282 (89k:46087)]. The authors observe that the complete symmetric projective tensor product Fs⊗ˆπF contains an isomorphic copy of l1. Consequently, P(2F) cannot be Montel, and the result follows.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16819
dc.identifier.citationMartínez Ansemil, J. M. & Taskinen, J. «On a Problem of Topologies in Infinite Dimensional Holomorphy». Archiv Der Mathematik, vol. 54, n.o 1, enero de 1990, pp. 61-64. DOI.org (Crossref), https://doi.org/10.1007/BF01190669.
dc.identifier.doi10.1007/BF01190669
dc.identifier.issn0003-889X
dc.identifier.officialurlhttps//doi.org/10.1007/BF01190669
dc.identifier.relatedurlhttp://www.springerlink.com/content/v40ml80035672677/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57631
dc.issue.number1
dc.journal.titleArchiv der Mathematik
dc.language.isoeng
dc.page.final64
dc.page.initial61
dc.publisherBirkhäuser Verlag
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordFréchet-Montel space
dc.subject.keywordCompact open topology
dc.subject.keywordNachbin topology
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn a problem of topologies in infinite dimensional holomorphyen
dc.typejournal article
dc.volume.number54
dspace.entity.typePublication
relation.isAuthorOfPublicatione94d6c20-a1ea-4d41-aa71-df8bbd1ad67d
relation.isAuthorOfPublication.latestForDiscoverye94d6c20-a1ea-4d41-aa71-df8bbd1ad67d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ansemil11.pdf
Size:
199.67 KB
Format:
Adobe Portable Document Format

Collections