Influence of stability on the flux-profile relationships for wind speed, φ_m, and temperature, φ_h, for the stable atmospheric boundary layer

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
European Geosciences Union
Google Scholar
Research Projects
Organizational Units
Journal Issue
Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on the flux-profile relationships for momentum, φ_m, and heat, φ_h. Measurements from 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) for the period from 10 to 28 September 1998 were analysed using the framework of the local-scaling approach (Nieuwstadt, 1984a; 1984b), which can be interpreted as an extension of the Monin-Obukhov similarity theory (Obukhov, 1946). The results show increasing values of φ_m and φ_h with increasing stability parameter ζ=z/3, up to a value of ζ≈1–2, above which the values remain constant. As a consequence of this levelling off in φm and φh for strong stability, the turbulent mixing is underestimated when linear similarity functions (Businger et al., 1971) are used to calculate surface fluxes of momentum and heat. On the other hand when φ_m and φ_h are related to the gradient Richardson number, R_i , a different behaviour is found, which could indicate that the transfer of momentum is greater than that of heat for high R_i . The range of validity of these linear functions is discussed in terms of the physical aspects of turbulent intermittent mixing.
© Author(s) 2006. This work is licensed under a Creative Commons License. This research has been funded by the Spanish Ministry of Education and Science (projects CLI97-0343 and CGL2004-03109/CLI). We are also indebted to all the team participating in SABLES98 and Prof. Casanova, Director of the CIBA, for his kind help. Thanks are also due to Dr. Früh for his constructive remarks. Comments from Dr. Esau and the two anonymous referees are also appreciated.
Unesco subjects
Arya, S. P. S.: Introduction to Micrometeorology, 2nd edition, International Geophysics Series, Academic Press, London., 2001. Babiano, A., Dubrulle, B., and Frick, P.: Some properties of two dimensional inverse energy cascade dynamics, Phys. Rev. E., 55, 2693–2706, 1997. Basu, S.: Large-eddy simulation of the stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modelling approach, PhD Thesis, Department of Civil Engineering, University of Minnesota, 114, 2004. Beljaars, A. C. M. and Holtslag, A. A.: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341, 1991. Benzi R., Ciliberto S., Tripiccione R., Baudet, C., Masssaioli, F., and Succi, S.: Extended self-similarity in turbulent flows, Phys. Rev. E., 48, 29–32, 1993. Berman, S., Ku, J. Y., Zhang, J., and Trivikrama, R.: Uncertainties in estimating the mixing depth. Comparing three mixing depth models with profiler measurements, Atmos. Environ., 31, 3023–3039, 1997. Boussinesq, J.: Essai sur la theorie des eaux courants, Mem. Pres. Par div. Savants a l’Academie Sci., Paris, 23, 1–680. 1877. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Fluxprofile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181–189, 1971. Carrillo, A., Sánchez, M. A., Platonov, A., and Redondo, J. M: Coastal and Interfacial Mixing. Laboratory Experiments and Satellite Observations, Physics and Chemistry of the Earth, part B, 26, 305–311, 2001. Cheng, Y. and Brutsaert, W.: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound-Layer Meteorol., 114, 519–538, 2005. Cuxart, J., Yagüe, C., Morales, G., Terradellas. E., Orbe, J., Calvo, J., Fernández, A., Soler, M. R., Infante, C, Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vilà, J., Redondo, J. M., Cantalapiedra, I. R., and Conangla, L.: Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98): A report, Bound-Layer Meteorol., 96, 337–370, 2000. Cheng, Y. and Brutsaert, W.: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound-Layer Meteorol., 114, 519–538, 2005. Derbyshire, S. H.: Stable boundary-layer modelling: Established approaches and beyond, Bound-Layer Meteorol., 90, 423–446, 1999. Derbyshire, S. H. and Redondo, J. M.: Fractals and waves, some geometrical approaches to stably-stratified turbulence, Anales de Física, Serie A, 86, 67–76, 1990. Duynkerke, P. G.: Turbulence, radiation and fog in Dutch stable boundary layers, Bound-Layer Meteorol., 90, 447–477, 1999. Dyer, A. J.: A review of flux-profile relationships, Bound-Layer Meteorol., 7, 363–372, 1974. Esau, I. N.: Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer, Ann. Geophys. 22, 3353–3362, 2004. Finnigan, J. J., Einaudi, F., and Fua, D.: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer, J. Atmos. Sci., 41, 2409–2436, 1984. Forrer, J. and Rotach, M. W.: On the turbulence structure in the stable boundary layer over the Greenland Ice Sheet, Bound-Layer Meteorol., 85, 111–136, 1997. Frisch, U.: Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, 1995. Gibson, C. H.: Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy, Proc. R. Soc. Lond. A 434, 149–164, 1991. Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., and Guest, P. S.: Stable boundary-layer scaling regimes: The Sheba Data., Bound-Layer Meteorol., 116, 201–235, 2005. Handorf, D., Foken, T., and Kottmeier, C.: The stable atmospheric boundary layer over an antarctic ice sheet, Bound-Layer Meteorol., 91, 165–189, 1999. Hicks, B. B.: Wind profile relationships from the Wangara experiments, Quart. J. Roy. Meteorol. Soc., 102, 535–551, 1976. Högström, U.: Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation, Bound-Layer Meteorol., 42, 55–78, 1988. Högström, U.: Review of some basic characteristics of the atmospheric surface layer, Bound-Layer Meteorol., 78, 215–246, 1996. Howell, J. F. and Sun, J.: Surface-layer fluxes in stable conditions, Bound.-Layer Meteorol., 90, 495–520, 1999. Jacobson, M. Z.: Atmospheric Pollution: History, Science and Regulation, Cambridge University Press, Cambridge, 2002. King, J. C.: Some measurements of turbulence over an antarctic shelf, Quart. J. Roy. Meteorol. Soc., 116, 379–400, 1990. King, J. C. and Anderson, P. S.: Installation and performance of the STABLE instrumentation at Halley, British Antarctic Survey Bulletin, 79, 65–77, 1988. King, J. C. and Anderson, P. S.: Heat and water vapour fluxes and scalar roughness lengths over an antarctic ice shelf, Bound.-Layer Meteorol., 69, 101–121, 1994. Klipp, C. L. and Mahrt, L: Flux-gradient relationship, selfcorrelation and intermittency in the stable boundary layer, Quart. J. Roy. Meteorol. Soc., 130, 2087–2103, 2004. Kolmogorov, A. N.: Local structure of turbulence in an incompressible fluid at very high Reynolds numbers, Dokl. Accad Nauk. URSS, 30,299–303, 1941. Kolmogorov, A. N: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82–85, 1962. Kondo, J., Kanechica, O., and Yasuda, N.: Heat and momentum transfers under strong stability in the atmospheric surface layer, J. Atmos. Sci., 35, 1012–1021. 1978. Kraichnan, R. H.: Turbulent cascade and intermittency growth, Proc. R. Soc. Lond. A, 434, 65–78, 1991. Lange, B., Larsen, S., Hojstrup, J., and Barthelmie, R.: The influence of thermal effects on the wind speed profile of the coastal marine boundary layer, Bound.-Layer Meteorol., 112, 587–617, 2004. Launiainen, J.: Derivation of the relationships between the Obukhov stability parameters and bulk Richardson number for flux-profiles studies, Bound.-Layer Meteorol.,76, 165–179, 1995. Lee, H. N.: Improvement of surface flux calculations in the atmospheric surface layer, J. Appl. Meteorol., 36, 1416-1423, 1997. Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Layer Meteorol., 17, 187–202, 1979. Mahjoub, O. B., Babiano A. and Redondo, J. M.: Structure functions in complex flows, Flow, Turbulence and Combustion, 59, 299–313, 1998. Mahrt, L.: Intermittency of atmospheric turbulence, J. Atmos. Sci, 46, 79–95, 1989. Mahrt, L.: Stratified atmospheric boundary-layers, Bound.-Layer Meteorol., 90, 375–396, 1999. Mahrt, L., Sun, J, Blumen, W., Delany, A., McClean, G., and Oncley, S.: Nocturnal boundary-layer regimes, Bound-Layer Meteorol., 88, 255–278, 1998. Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the ground layer of the atmosphere, Akad. Nauk SSSR, 151, 163–187, 1954. Morgan, T. and Bornstein, R. D.: Inversion climatology at San Jose, California, Mon. Weather Rev., 105, 653–656, 1977. Nai-Ping, L., Neff, W. D., and Kaimal, J. C.: Wave and turbulence structure in a disturbed nocturnal inversion, Bound-Layer Meteorol., 26, 141–155, 1983. Nieuwstadt, F. T. M.: Some aspects of the turbulent stable boundary layer, Bound-Layer Meteorol., 30, 31–55, 1984a. Nieuwstadt, F. T. M.: The turbulent structure of the stable nocturnal boundary layer, J. Atmos. Sci., 41, 2202–2216, 1984b. Noguer, M., Jones, R., and Murphy, J.: Sources of systematic errors in the climatology of a regional climatic model over Europe, Clim. Dynam., 14, 691–712, 1998. Obukhov, A. M.: Turbulence in an atmosphere with inhomogeneous temperature, Tr. Inst. Teor. Geofis. Akad. Nauk. SSSR, 1, 95–115, 1946, English translation in Bound.-Layer Meteorol., 2, 7–29, 1971. Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R. Cuxart, J., Terradellas, E., Balsley, B., and Jensen, M.: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer, Bull. Amer. Meteorol. Soc., 83, 555–581, 2002. Redondo, J. M., Sánchez, M. A., and Cantalapiedra, I. R.: Turbulent mechanisms in stratified fluids, Dyn. Atmos. Oceans, 24, 107–115, 1996. Rees, J. M., Denholm-Price, J. C. W., King, J. C., and Anderson, P. S.: A climatological study of internal-gravity waves in the atmospheric boundary layer, J. Atmos. Sci., 57, 511–526, 2000. Rodríguez, A., Sánchez Arcilla, A., Redondo, J. M., Bahia, E., and Sierra, J. P.: Pollutant dispersion in the nearshore region: modelling and measurements, Water Science and Technology, 32, 169–178, 1995. Sharan, M., Rama Krishna, T. V. B. P. S., and Aditi: On the bulk Richardson number and flux–profile relations in an atmospheric surface layer under weak wind stable conditions, Atmos. Environ., 37, 3681–3691, 2003. Sodemann, H. and Foken, T.: Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer, Quart. J. Roy. Meteorol. Soc., 130, 2665–2671, 2004. Sreenivasan, K. R. and Antonia, R. A.: The phenomenology of small-scale turbulence, Ann. Rev. Fluid Mech., 29, 435–472, 1997. Sugita, M. and Brutsaert, W.: The stability functions in the bulk similarity formulation for the unstable boundary layer, BoundLayer Meteorol., 61, 65–80, 1992. Ueda, H., Mitsumoto, S., and Komori, S.: Buoyancy effects on the turbulent transport processes in the lower atmosphere, Quart. J. Roy. Meteorol. Soc., 107, 561–578, 1981. Webb, E. K.: Profile relationships: The log-linear range and extension to strong stability, Quart. J. Roy. Meteorol. Soc., 96, 67–90,1970. Wittich, K. P. and Roth, R.: A case study of nocturnal wind and temperature profiles over the inhomogeneous terrain of Northern Germany with some considerations of turbulent fluxes, BoundLayer Meteorol., 28, 169–186, 1984. Wyngaard, J. C.: On surface layer turbulence, in: Workshop in Micrometeorology, edited by: Haugen, D. A., Am. Meteorol. Soc., 105–120, 1973. Yagüe, C. and Cano, J. L.: Eddy transfer processes in the atmospheric boundary layer, Atmos. Environ., 28, 1275–1289, 1994a. Yagüe, C. and Cano, J. L.: The influence of stratification on heat and momentum turbulent transfer in Antarctica, Bound-Layer Meteorol., 69, 123–136, 1994b. Yagüe, C. and Redondo, J. M.: A case study of turbulent parameters during the Antarctic winter, Antarc. Sci., 7, 421–433, 1995. Yagüe, C., Maqueda, G., and Rees, J. M.: Characteristics of turbulence in the lower atmosphere at Halley IV station, Antarctica, Dyn. Atmos. Oceans, 34, 205–223, 2001. Yagüe, C., Morales, G., Terradellas, E., and Cuxart, J.: Turbulent mixing in the stable atmospheric boundary layer, Ercoftac Bulletin, 60, 53–57, 2004. Zilitinkevich, S. S.: Third-order transport due to internal gravity waves and non-local turbulence in the stably stratified surface layer, Quart. J. Roy. Meteorol. Soc., 128, 913–925, 2002. Zilitinkevich, S. S. and Chailikov , D. V.: Determining the universal wind velocity and temperature profiles in the atmospheric boundary layer, Izvestiya, Atmos. Ocean. Phys., 4, 165–170, 1968. Zilitinkevich, S. S. and Calanca, P.: An extended similarity theory for the stably stratified atmospheric surface layer, Quart. J. Roy. Meteorol. Soc., 126, 1913–1923, 2000. Zilitinkevich, S. S. and Esau, I. N.: The effect of baroclinicity on the equilibrium depth of the neutral and stable planetary boundary layers, Quart. J. Roy. Meteorol. Soc., 129, 3339–3356, 2003.