Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A fast and stable method to compute the likelihood of state-space models with unit roots

dc.contributor.authorCasals Carro, José
dc.contributor.authorSotoca López, Sonia
dc.contributor.authorJerez Méndez, Miguel
dc.date.accessioned2023-06-21T01:38:15Z
dc.date.available2023-06-21T01:38:15Z
dc.date.issued1999
dc.description.abstractWe propose two fast and stable methods to compute the likelihood of econometric models in state-space form, allowing for unit roots. The first one exploits the properties of the Kalman filter when applied to models in steady-state innovations form. Afterwards we derive a procedure with similar properties that can be applied to any state-space model satisfying weak assumptions.
dc.description.abstractEn este trabajo se proponen dos métodos rápidos y eficientes para evaluar la función de verosimilitud de modelos econométricos en forma de espacio de los estados, permitiendo raíces unitarias. El primero de ellos aprovecha las propiedades del filtro de Kalman cuando se aplica a modelos en forma steady-state innovations. Posteriormente se deriva un procedimiento con propiedades similares que puede aplicarse a cualquier modelo en espacio de los estados que satisfaga algunos supuestos poco restrictivos.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28976
dc.identifier.relatedurlhttp://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64221
dc.issue.number01
dc.language.isoeng
dc.page.total13
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordState-Space models
dc.subject.keywordExact likelihood
dc.subject.keywordKalman filter
dc.subject.keywordUnit roots.
dc.subject.ucmEconometría (Economía)
dc.subject.unesco5302 Econometría
dc.titleA fast and stable method to compute the likelihood of state-space models with unit roots
dc.typetechnical report
dc.volume.number1999
dcterms.referencesAnderson, B.D.O. and J.B. Moore, 1979. Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J.). Aoki, M., 1990. State Space Modeling of Time Series, (Springer-Verlag, Heidelberg). Bierman, G.J., 1977. Factorization Methods for Discrete Sequential Estimation, (Academic Press, Orlando). Casals, J. and S. Sotoca, 1997. Exact Initial Conditions for Maximum Likelihood Estimation of State Space Models with Stochastic Inputs. Economics Letters 57, 3, 261-267. Chan, S.W., G.C. Goodwin and K.S. Sin, 1984. Convergence Properties of the Riccati Difference Equation in Optimal Filtering of Nonstabilizable Systems. IEEE Transactions on Automatic Control, 29, 110-118. De Jong, P. 1988. The likelihood for a state space model. Biometrika 75, 1, 165-169. De Jong, P. and S. Chu-Chun-Lin, 1994. Stationary and Non-Stationary State Space Models. Journal of Time Series Analysis 15,2,151-166. Harvey, A.C., 1989. Forecasting, Structural Time Series Models and the Kalman Filter, (Cambridge University Press, Cambridge). Ionescu, V., Dara, C. and M. Weiss, 1997. General Matrix Pencil Techniques for the Solution of Algebraic Riccati Equations; A Unified Approach. IEEE Transactions on Automatic Control 42, 8, 1085-1097. Terceiro, J., 1990. Estimation of dynamic econometric models with errors in variables, (Springer-Verlag, Heidelberg). Watson, M.W., 1989. Recursive solution methods for dynamic linear rational expectations models. Journal of Econometrics 41, 65-89.
dspace.entity.typePublication
relation.isAuthorOfPublication138478db-3f49-41e4-a76e-ff6d03e56bb8
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscovery138478db-3f49-41e4-a76e-ff6d03e56bb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9901.pdf
Size:
267.34 KB
Format:
Adobe Portable Document Format