Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uniform density and m-density for subrings of C(X)

dc.contributor.authorGarrido, M. Isabel
dc.contributor.authorMontalvo, Francisco
dc.date.accessioned2023-06-20T16:53:12Z
dc.date.available2023-06-20T16:53:12Z
dc.date.issued1994
dc.description.abstractThis paper deals with the equivalence between u-density and m-density for the subrings of C(X). It was proved by Kurzweil that such equivalence holds for those subrings that are closed under bounded inversion. Here an example is given in C(N) of a u-dense subring that is not m-dense. It is deduced that the two types of density coincide only in the trivial case where these topologies are the same, that is, if and only if X is a pseudocompact space.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15537
dc.identifier.doi10.1017/S0004972700016531
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://www.journals.cambridge.org/action/displayJournal?jid=BAZ
dc.identifier.relatedurlhttp://www.cambridge.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57331
dc.issue.number3
dc.journal.titleBulletin of the Australian Mathematical Society
dc.language.isoeng
dc.page.final432
dc.page.initial427
dc.publisherCambridge University Press
dc.rights.accessRightsrestricted access
dc.subject.cdu515.1
dc.subject.keywordU-density
dc.subject.keywordm-density
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleUniform density and m-density for subrings of C(X)
dc.typejournal article
dc.volume.number49
dcterms.referencesF.W. Anderson, 'Approximation in systems of real-valued continuous functions', Trans.Amer. Math. Soc. 103 (1962), 249-271. M.I. Garrido and F. Montalvo, 'On uniformly dense and m-dense subsets of C(X)\Extracta Math. 6 (1991), 15-16. M.I. Garrido and F. Montalvo, 'Uniform approximation theorems for real-valued continuous functions', Topology Appl. 45 (1992), 145-155. L. Gillman and M. Jerison, Rings of continuous functions (Springer-Verlag, Berlin, Heidelberg,New York, 1976). E. Hewitt, 'Rings of real-valued continuous functions. I', Trans. Amer. Math. Soc. 64 (1948), 45-99. J. Kurzweil, 'On approximation in real Banach spaces', Studia Math. 14 (1954), 214-231.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
230.91 KB
Format:
Adobe Portable Document Format

Collections