Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Quadratic algebras as commutants of algebraic Hamiltonians in the enveloping algebra of Schrödinger algebras

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Masson
Citations
Google Scholar

Citation

Abstract

We discuss a procedure to determine finite sets M within the commutant of an algebraic Hamiltonian in the enveloping algebra of a Lie algebra g such that their generators define a quadratic algebra. Although independent from any realization of Lie algebras by differential operators, the method is partially based on an analytical approach, and uses the coadjoint representation of the Lie algebra g. The procedure, valid for non-semisimple algebras, is tested for the centrally extended Schrödinger algebras Ŝ(n) for various different choices of algebraic Hamiltonian. For the so-called extended Cartan solvable case, it is shown how the existence of minimal quadratic algebras can be inferred without explicitly manipulating the enveloping algebra.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections