Bimorphisms in pro-homotopy and proper homotopy.
| dc.contributor.author | Dydak, J. | |
| dc.contributor.author | Romero Ruiz del Portal, Francisco | |
| dc.date.accessioned | 2023-06-20T18:46:09Z | |
| dc.date.available | 2023-06-20T18:46:09Z | |
| dc.date.issued | 1999 | |
| dc.description.abstract | A bimorphism is both an epimorphism and a monomorphism. If every bimorphism is an iso then the given category is said to be balanced. Such notions are studied in several contexts (pro-categories, pro-homotopy, shape, proper homotopy). The reference for pro-categories is [S. Mardesic and J. Segal, Shape theory (1982;]. The main results are related to the category towH0 where H0 is the homotopy category of pointed connected CW-complexes and towH0 is the full subcategory of pro-H0 constituted by the inverse sequences in H0. | |
| dc.description.department | Depto. de Álgebra, Geometría y Topología | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/21783 | |
| dc.identifier.issn | 0016-2736 | |
| dc.identifier.officialurl | http://journals.impan.gov.pl/fm/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/58559 | |
| dc.issue.number | 3 | |
| dc.journal.title | Fundamenta Mathematicae | |
| dc.page.final | 289 | |
| dc.page.initial | 269 | |
| dc.publisher | Polish acad sciences inst mathematics | |
| dc.rights.accessRights | metadata only access | |
| dc.subject.cdu | 515.1 | |
| dc.subject.keyword | Pro-category | |
| dc.subject.keyword | Epimorphism | |
| dc.subject.keyword | Monomorphism | |
| dc.subject.keyword | Shape | |
| dc.subject.ucm | Topología | |
| dc.subject.unesco | 1210 Topología | |
| dc.title | Bimorphisms in pro-homotopy and proper homotopy. | |
| dc.type | journal article | |
| dc.volume.number | 160 | |
| dspace.entity.type | Publication |

