Bimorphisms in pro-homotopy and proper homotopy.

dc.contributor.authorDydak, J.
dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.date.accessioned2023-06-20T18:46:09Z
dc.date.available2023-06-20T18:46:09Z
dc.date.issued1999
dc.description.abstractA bimorphism is both an epimorphism and a monomorphism. If every bimorphism is an iso then the given category is said to be balanced. Such notions are studied in several contexts (pro-categories, pro-homotopy, shape, proper homotopy). The reference for pro-categories is [S. Mardesic and J. Segal, Shape theory (1982;]. The main results are related to the category towH0 where H0 is the homotopy category of pointed connected CW-complexes and towH0 is the full subcategory of pro-H0 constituted by the inverse sequences in H0.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21783
dc.identifier.issn0016-2736
dc.identifier.officialurlhttp://journals.impan.gov.pl/fm/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58559
dc.issue.number3
dc.journal.titleFundamenta Mathematicae
dc.page.final289
dc.page.initial269
dc.publisherPolish acad sciences inst mathematics
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.1
dc.subject.keywordPro-category
dc.subject.keywordEpimorphism
dc.subject.keywordMonomorphism
dc.subject.keywordShape
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleBimorphisms in pro-homotopy and proper homotopy.
dc.typejournal article
dc.volume.number160
dspace.entity.typePublication

Download

Collections