Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Three dimensional nanowire networks and complex nanostructures of indium oxide

dc.contributor.authorMagdas, Dana A.
dc.contributor.authorCremades Rodríguez, Ana Isabel
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.date.accessioned2023-06-20T10:37:54Z
dc.date.available2023-06-20T10:37:54Z
dc.date.issued2006-11-01
dc.description© 2006 American Institute of Physics This work has been supported by EU Marie Curie program (HPMT-CT-2001-00215) by MEC (Project MAT-2003- 00455), and by CAM (Project GR/MAT 630-04). One of the authors (D.A.M.) acknowledges the Marie Curie fellowship in the frame of the HPMT-CT-2001-00215 project.
dc.description.abstractElongated In2O3 micro- and nanostructures have been grown by two-step thermal treatments of compacted InN powder, at temperatures between 350 and 700 degrees C. Different thermal treatments have been found to induce the growth of structures with different sizes and morphologies as wires, rods, or arrows. The experimental conditions leading to the different structures, as well as the evolution of the structures during the treatments, have been investigated. Some treatments lead to large scale formation of three dimensional networks of the mentioned structures. The mechanism of network formation is discussed. The structures have been characterized by cathodoluminescence, scanning electron microscopy, and x-ray diffraction.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipEU Marie Curie program
dc.description.sponsorshipMEC
dc.description.sponsorshipCAM
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23157
dc.identifier.doi10.1016/j.apradiso.2006.07.010
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://jap.aip.org/resource/1/japiau/v100/i9/p094320_s1
dc.identifier.relatedurlhttp://jap.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50835
dc.issue.number1
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDHPMT-CT-2001-00215
dc.relation.projectIDMAT-2003-00455
dc.relation.projectIDGR/MAT 630-04
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordFundamental-Band Gap
dc.subject.keywordIn2o3 Nanowires
dc.subject.keywordGrowth
dc.subject.keywordInn
dc.subject.keywordZno
dc.subject.keywordLuminescence
dc.subject.keywordNanobelts
dc.subject.keywordEmission
dc.subject.ucmFísica de materiales
dc.titleThree dimensional nanowire networks and complex nanostructures of indium oxide
dc.typejournal article
dc.volume.number65
dcterms.references1. Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001). 2. X. Y. Kong and Z. L. Wang, Solid State Commun. 128, 1 (2003). 3. C. Liang, G. Meng, Y. Lei, F. Phillipp, and L. Zhang, Adv. Mater. (Weinheim, Ger.)13, 1330 (2001). 4. L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou, and B. Q. Hu, Appl. Phys. A: Mater. Sci. Process. A75, 687 (2002). 5. X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang, Appl. Phys. A: Mater. Sci. Process. 74, 437 (2002). 6. F. Zeng, X. Zhang, J. Wang, L. Wang, and L. Zhang, Nanotechnology 15, 596 (2004). 7. D. A. Magdas, A. Cremades, and J. Piqueras, Appl. Phys. Lett. 88, 113107 (2006). 8. D. Maestre, A. Cremades, and J. Piqueras, J. Appl. Phys. 97, 44316 (2005). 9. E. Nogales, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 86, 113112 (2005). 10. J. Grym, P. Fernández, and J. Piqueras, Nanotechnology 16, 931 (2005). 11. P. Hidalgo, B. Méndez, and J. Piqueras, Nanotechnology 16, 2521 (2005). 12. H. Jia, Y. Zhang, X. Chen, J. Shu, X. Luo, Z. Zhang, and D. Yu, Appl. Phys. Lett. 82, 4146 (2003). 13. P. Guha, S. Kar, and S. Chaudhuri, Appl. Phys. Lett. 85, 3851 (2004). 14. C. L. Hsin, J. H. He, and L. J. Chen, Appl. Surf. Sci. 244, 101 (2005). 15. P. X. Gao, C. S. Lao, W. L. Hughes, and Z. L. Wang, Chem. Phys. Lett. 408, 174 (2005). 16. J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, Adv. Mater. (Weinheim, Ger.) 17, 2107 (2005). 17. R. Yang and Z. L. Wang, Solid State Commun. 134, 741 (2005). 18. J. Lao, J. Huang, D. Wang, and Z. Ren, Adv. Mater. (Weinheim, Ger.) 16, 65 (2004). 19. M. S. Lee, W. C. Choi, E. K. Kim, C. K. Kim, and S. K. Min, Thin Solid Films 279, 1 (1996). 20. T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986). 21. V. Yu. Davidov et al., Phys. Status Solidi B 229, R1 (2002). 22. J. Wu et al., Appl. Phys. Lett. 80, 3967 (2002). 23. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublicationda0d631e-edbf-434e-8bfd-d31fb2921840
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryda0d631e-edbf-434e-8bfd-d31fb2921840

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CremadesAna20libre.pdf
Size:
675.6 KB
Format:
Adobe Portable Document Format

Collections