Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Interfacial hydrodynamics: a microscopic approach

dc.contributor.authorBaus, Marc
dc.contributor.authorFernández Tejero, Carlos
dc.date.accessioned2023-06-21T02:06:58Z
dc.date.available2023-06-21T02:06:58Z
dc.date.issued1983
dc.description© 1983 American Institute of Physics
dc.description.abstractLinearized hydrodynamic equations for a nonuniform anisotropic fluid are obtained from the exact Mori-Zwanzig equations for the conserved densities. In the particular case of a two-phase system with a planar equilibrium interface, these equations can be reduced to the ordinary hydrodynamic equations inside each bulk phase and to surface hydrodynamic equations for the interfacial layer. Surface transport coefficients and surface thermodynamic parameters are hereby obtained as Gibbs surface excess values. All the known phenomenological equations can be recovered by suitable approximations. Various correction terms to the phenomenological results. including Laplace's formula, are found.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24122
dc.identifier.doi10.1063/1.444473
dc.identifier.issn0021-9606
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.444473
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64888
dc.issue.number1
dc.journal.titleJournal of Chemical Physics
dc.language.isoeng
dc.page.final496
dc.page.initial483
dc.publisherAmerican Institute of Physics
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordPhysics
dc.subject.keywordAtomic
dc.subject.keywordMolecular & chemical
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleInterfacial hydrodynamics: a microscopic approach
dc.typejournal article
dc.volume.number78
dcterms.references1. L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon, London, 1962). 2. P. Résibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977). 3. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw‐Hill, New York, 1980). 4. V. G. Levich, Physico‐chemical Hydrodynamics (Prentice Hall, London, 1962). 5. M. H. Ernst and J. E. Dorfman, J. Stat. Phys. 12, 311 (1975). 6. M. Baus and C. F. Tejero, Chem. Phys. Lett. 84, 222 (1981). 7. S. Toxvaerd, in Statistical Mechanics, edited by K. Singer (The Chemical Society, London, 1975), Vol. 2. 8. R. Evans, Adv. Phys. 28, 143 (1979). 9. C. A. Croxton, Statistical Mechanics of the Liquid Surface (Wiley, New York, 1980). 10. M. S. Jhon, R. C. Desai, and J. S. Dahler, Chem. Phys. Lett. 56, 151 (1978); M. S. Jhon, R. C. Desai, and J. S. Dahler, Adv. Chem. Phys. 46, 279 (1981). 11. D. Bedeaux, A. M. Albano, and P. Mazur, Physica A 82, 438 (1976). 12. M. Baus, J. Chem. Phys. 76, 2003 (1982). 13. B. U. Felderhof, Physica 48, 541 (1970). 14. L. A. Turski and J. S. Langer, Phys. Rev. A 22, 2189 (1980). 15. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Mass., 1975). 16. P. Schofield, Proc. Phys. Soc. 88, 149 (1960). 17. R. Defay and I. Prigogine, Surface Tension and Adsorption (Longmans, London, 1966). 18. See Ref. 1, Chap. 8. 19. D. Ronis, D. Bedeaux, and I. Oppenheim, Physica A 90, 487 (1978).
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero39libre.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format

Collections