Interfacial hydrodynamics: a microscopic approach
dc.contributor.author | Baus, Marc | |
dc.contributor.author | Fernández Tejero, Carlos | |
dc.date.accessioned | 2023-06-21T02:06:58Z | |
dc.date.available | 2023-06-21T02:06:58Z | |
dc.date.issued | 1983 | |
dc.description | © 1983 American Institute of Physics | |
dc.description.abstract | Linearized hydrodynamic equations for a nonuniform anisotropic fluid are obtained from the exact Mori-Zwanzig equations for the conserved densities. In the particular case of a two-phase system with a planar equilibrium interface, these equations can be reduced to the ordinary hydrodynamic equations inside each bulk phase and to surface hydrodynamic equations for the interfacial layer. Surface transport coefficients and surface thermodynamic parameters are hereby obtained as Gibbs surface excess values. All the known phenomenological equations can be recovered by suitable approximations. Various correction terms to the phenomenological results. including Laplace's formula, are found. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/24122 | |
dc.identifier.doi | 10.1063/1.444473 | |
dc.identifier.issn | 0021-9606 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.444473 | |
dc.identifier.relatedurl | http://scitation.aip.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64888 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of Chemical Physics | |
dc.language.iso | eng | |
dc.page.final | 496 | |
dc.page.initial | 483 | |
dc.publisher | American Institute of Physics | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 536 | |
dc.subject.keyword | Physics | |
dc.subject.keyword | Atomic | |
dc.subject.keyword | Molecular & chemical | |
dc.subject.ucm | Termodinámica | |
dc.subject.unesco | 2213 Termodinámica | |
dc.title | Interfacial hydrodynamics: a microscopic approach | |
dc.type | journal article | |
dc.volume.number | 78 | |
dcterms.references | 1. L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon, London, 1962). 2. P. Résibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977). 3. J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw‐Hill, New York, 1980). 4. V. G. Levich, Physico‐chemical Hydrodynamics (Prentice Hall, London, 1962). 5. M. H. Ernst and J. E. Dorfman, J. Stat. Phys. 12, 311 (1975). 6. M. Baus and C. F. Tejero, Chem. Phys. Lett. 84, 222 (1981). 7. S. Toxvaerd, in Statistical Mechanics, edited by K. Singer (The Chemical Society, London, 1975), Vol. 2. 8. R. Evans, Adv. Phys. 28, 143 (1979). 9. C. A. Croxton, Statistical Mechanics of the Liquid Surface (Wiley, New York, 1980). 10. M. S. Jhon, R. C. Desai, and J. S. Dahler, Chem. Phys. Lett. 56, 151 (1978); M. S. Jhon, R. C. Desai, and J. S. Dahler, Adv. Chem. Phys. 46, 279 (1981). 11. D. Bedeaux, A. M. Albano, and P. Mazur, Physica A 82, 438 (1976). 12. M. Baus, J. Chem. Phys. 76, 2003 (1982). 13. B. U. Felderhof, Physica 48, 541 (1970). 14. L. A. Turski and J. S. Langer, Phys. Rev. A 22, 2189 (1980). 15. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, Reading, Mass., 1975). 16. P. Schofield, Proc. Phys. Soc. 88, 149 (1960). 17. R. Defay and I. Prigogine, Surface Tension and Adsorption (Longmans, London, 1966). 18. See Ref. 1, Chap. 8. 19. D. Ronis, D. Bedeaux, and I. Oppenheim, Physica A 90, 487 (1978). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 45ce99f0-8f7e-41b5-ac11-1ae7ba368c80 | |
relation.isAuthorOfPublication.latestForDiscovery | 45ce99f0-8f7e-41b5-ac11-1ae7ba368c80 |
Download
Original bundle
1 - 1 of 1