Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Data integration for immunology

dc.contributor.authorPineda Sanjuan, Silvia
dc.contributor.authorBunis, Daniel G.
dc.contributor.authorKosti, Idit
dc.contributor.authorSirota, Marina
dc.contributor.editorAltman, Russ B.
dc.date.accessioned2024-01-29T11:38:35Z
dc.date.available2024-01-29T11:38:35Z
dc.date.issued2020
dc.description.abstractOver the last several years, next-generation sequencing and its recent push toward single-cell resolution have transformed the landscape of immunology research by revealing novel complexities about all components of the immune system. With the vast amounts of diverse data currently being generated, and with the methods of analyzing and combining diverse data improving as well, integrative systems approaches are becoming more powerful. Previous integrative approaches have combined multiple data types and revealed ways that the immune system, both as a whole and as individual parts, is affected by genetics, the microbiome, and other factors. In this review, we explore the data types that are available for studying immunology with an integrative systems approach, as well as the current strategies and challenges for conducting such analyses.en
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipBurroughs Wellcome Fund
dc.description.statuspub
dc.identifier.citationPineda, Silvia and Bunis, Daniel and Kosti, Idit and Sirota, Marina, Data Integration for Immunology (July 2020). Annual Review of Biomedical Data Science, Vol. 3, pp. 113-136.
dc.identifier.doi10.1146/annurev-biodatasci-012420-122454
dc.identifier.issn2574-3414
dc.identifier.officialurlhttps://doi.org/10.1146/annurev-biodatasci-012420-122454
dc.identifier.relatedurlhttps://www.annualreviews.org/doi/10.1146/annurev-biodatasci-012420-122454
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95941
dc.issue.number1
dc.journal.titleAnnual review of biomedical data science
dc.language.isoeng
dc.page.final136
dc.page.initial113
dc.publisherAnnual Reviews, Palo Alto, CA
dc.relation.projectIDK01LM012381
dc.relation.projectIDP30 AR070155
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu612.017
dc.subject.cdu004.85
dc.subject.keywordImmunology
dc.subject.keywordSystems immunology
dc.subject.keywordData integration
dc.subject.keywordMachine learning
dc.subject.ucmInmunología
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco2412 Inmunología
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleData integration for immunologyen
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number3
dspace.entity.typePublication
relation.isAuthorOfPublication9ff02bb9-3623-452e-ad72-8bb19687ec4e
relation.isAuthorOfPublication.latestForDiscovery9ff02bb9-3623-452e-ad72-8bb19687ec4e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Data_integration_for_immunology.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format

Collections