Minimum Rényi pseudodistance estimators for logistic regression models
dc.book.title | Trends in mathematical, information and data sciences: a tribute to Leandro Pardo | |
dc.contributor.author | Alonso Revenga, Juana María | |
dc.contributor.author | Calviño Martínez, Aída | |
dc.contributor.author | Muñoz López, Susana | |
dc.contributor.editor | Balakrishnan, Narayanaswamy | |
dc.contributor.editor | Gil, María Ángeles | |
dc.contributor.editor | Martín Apaolaza, Nirian | |
dc.contributor.editor | Morales González, Domingo | |
dc.contributor.editor | Pardo, María del Carmen | |
dc.date.accessioned | 2023-12-21T13:34:14Z | |
dc.date.available | 2023-12-21T13:34:14Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this work we propose a new family of estimators, called minimum Rényi pseudodistance estimators (MRPE), as a robust generalization of maximum likelihood estimators (MLE) for the logistic regression model based on the Rényi pseudodistance introduced by Jones et al. [14], along with their corresponding asymptotic distribution. Based on this information, we further develop three types of confidence intervals (approximate and parametric and non-parametric bootstrap ones). Finally, a simulation study is conducted considering different levels of outliers, where a better behavior of the MRPE with respect to the MLE is shown. | |
dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.identifier.citation | Alonso, J. M., Calviño, A., & Muñoz, S. (2022). Minimum Rényi Pseudodistance Estimators for Logistic Regression Models. Trends in Mathematical, Information and Data Sciences: A Tribute to Leandro Pardo, 131-145. | |
dc.identifier.doi | 10.1007/978-3-031-04137-2_13 | |
dc.identifier.isbn | 978-3-031-04137-2 | |
dc.identifier.issn | 2198-4190 | |
dc.identifier.officialurl | https://doi.org/10.1007/978-3-031-04137-2_13 | |
dc.identifier.relatedurl | https://link.springer.com/book/10.1007/978-3-031-04137-2 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/91716 | |
dc.language.iso | eng | |
dc.page.final | 145 | |
dc.page.initial | 131 | |
dc.page.total | 15 | |
dc.publisher | Springer | |
dc.relation.ispartofseries | Studies in systems, decision and control | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 519.2 | |
dc.subject.cdu | 004.6 | |
dc.subject.keyword | Power Divergence | |
dc.subject.keyword | Estimator | |
dc.subject.keyword | Hellinger Distance | |
dc.subject.ucm | Estadística | |
dc.subject.unesco | 1209.03 Análisis de Datos | |
dc.title | Minimum Rényi pseudodistance estimators for logistic regression models | |
dc.type | book part | |
dc.volume.number | 445 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | aaa297d5-108f-4340-b756-57b16c3e4453 | |
relation.isAuthorOfPublication | 9910901c-7e34-482c-b57c-470f4e445cfb | |
relation.isAuthorOfPublication | 963b29aa-6e26-42f9-aaf2-8e5a238cbc87 | |
relation.isAuthorOfPublication.latestForDiscovery | aaa297d5-108f-4340-b756-57b16c3e4453 | |
relation.isEditorOfPublication | 1705b043-bb96-4d44-8e13-1c2238cf1717 | |
relation.isEditorOfPublication | 4d5cedd9-975b-43fb-bc2e-f55dec36a2bf | |
relation.isEditorOfPublication.latestForDiscovery | 1705b043-bb96-4d44-8e13-1c2238cf1717 |