Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Minimum Rényi pseudodistance estimators for logistic regression models

dc.book.titleTrends in mathematical, information and data sciences: a tribute to Leandro Pardo
dc.contributor.authorAlonso Revenga, Juana María
dc.contributor.authorCalviño Martínez, Aída
dc.contributor.authorMuñoz López, Susana
dc.contributor.editorBalakrishnan, Narayanaswamy
dc.contributor.editorGil, María Ángeles
dc.contributor.editorMartín Apaolaza, Nirian
dc.contributor.editorMorales González, Domingo
dc.contributor.editorPardo, María del Carmen
dc.date.accessioned2023-12-21T13:34:14Z
dc.date.available2023-12-21T13:34:14Z
dc.date.issued2022
dc.description.abstractIn this work we propose a new family of estimators, called minimum Rényi pseudodistance estimators (MRPE), as a robust generalization of maximum likelihood estimators (MLE) for the logistic regression model based on the Rényi pseudodistance introduced by Jones et al. [14], along with their corresponding asymptotic distribution. Based on this information, we further develop three types of confidence intervals (approximate and parametric and non-parametric bootstrap ones). Finally, a simulation study is conducted considering different levels of outliers, where a better behavior of the MRPE with respect to the MLE is shown.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationAlonso, J. M., Calviño, A., & Muñoz, S. (2022). Minimum Rényi Pseudodistance Estimators for Logistic Regression Models. Trends in Mathematical, Information and Data Sciences: A Tribute to Leandro Pardo, 131-145.
dc.identifier.doi10.1007/978-3-031-04137-2_13
dc.identifier.isbn978-3-031-04137-2
dc.identifier.issn2198-4190
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-04137-2_13
dc.identifier.relatedurlhttps://link.springer.com/book/10.1007/978-3-031-04137-2
dc.identifier.urihttps://hdl.handle.net/20.500.14352/91716
dc.language.isoeng
dc.page.final145
dc.page.initial131
dc.page.total15
dc.publisherSpringer
dc.relation.ispartofseriesStudies in systems, decision and control
dc.rights.accessRightsmetadata only access
dc.subject.cdu519.2
dc.subject.cdu004.6
dc.subject.keywordPower Divergence
dc.subject.keywordEstimator
dc.subject.keywordHellinger Distance
dc.subject.ucmEstadística
dc.subject.unesco1209.03 Análisis de Datos
dc.titleMinimum Rényi pseudodistance estimators for logistic regression models
dc.typebook part
dc.volume.number445
dspace.entity.typePublication
relation.isAuthorOfPublicationaaa297d5-108f-4340-b756-57b16c3e4453
relation.isAuthorOfPublication9910901c-7e34-482c-b57c-470f4e445cfb
relation.isAuthorOfPublication963b29aa-6e26-42f9-aaf2-8e5a238cbc87
relation.isAuthorOfPublication.latestForDiscoveryaaa297d5-108f-4340-b756-57b16c3e4453
relation.isEditorOfPublication1705b043-bb96-4d44-8e13-1c2238cf1717
relation.isEditorOfPublication4d5cedd9-975b-43fb-bc2e-f55dec36a2bf
relation.isEditorOfPublication.latestForDiscovery1705b043-bb96-4d44-8e13-1c2238cf1717

Download