Minimal invariant subspaces for composition operators

dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorGorkin, Pamela
dc.date.accessioned2023-06-20T03:32:11Z
dc.date.available2023-06-20T03:32:11Z
dc.date.issued2011
dc.description.abstractA remarkable result by Nordgren, Rosenthal and Wintrobe states that a positive answer to the Invariant Subspace Problem is equivalent to the statement that any minimal invariant subspace for a composition operator C phi, induced by a hyperbolic automorphism phi of the unit disc D in the Hardy space H(2) is one dimensional. Motivated by this result, for f epsilon H(2) we consider the space K(f), which is the closed subspace generated by the orbit of f. We obtain two results, one for functions with radial limit zero, and one for functions without radial limit zero, but tending to zero on a sequence of iterates. More precisely, for those functions f epsilon H(2) with radial limit zero and continuous at the fixed points of phi, we provide a construction of a function g epsilon K(f) such that f is a cluster point of the sequence of iterates {g o phi(_)n}. In case f is in the disc algebra, we have K(g) subset of K(f) subset of (span) over bar {g o phi(n): n epsilon Z). For a function f epsilon H(2) tending to zero on a sequence of iterates {phi(n) (z(0))) at a point z(0) with vertical bar z(0)vertical bar < 1, but having no radial limit at the attractive fixed point, we establish the existence of certain functions in the space and show that unless f is constant on the sequence of iterates {phi(n) (z(0))}, the space K(f) is not minimal.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipPlan Nacional I+D
dc.description.sponsorshipGobierno de Aragon research group Analisis Matematico y Aplicaciones
dc.description.sponsorshipVicerrectorado de Investigacion. Desarrollo e Innovación
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21013
dc.identifier.citationGallardo Gutiérrez, E. A., & Gorkin, P. «Minimal Invariant Subspaces for Composition Operators». Journal de Mathématiques Pures et Appliquées, vol. 95, n.o 3, marzo de 2011, pp. 245-59. DOI.org (Crossref), https://doi.org/10.1016/j.matpur.2010.04.003.
dc.identifier.doi10.1016/j.matpur.2010.04.003
dc.identifier.issn0021-7824
dc.identifier.officialurlhttps//doi.org/10.1016/j.matpur.2010.04.003
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0021782410000565
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43775
dc.issue.number95
dc.journal.titleJournal de Mathématiques Pures et Appliquées
dc.language.isoeng
dc.page.final259
dc.page.initial245
dc.publisherElsevier
dc.relation.projectIDMTM2007-61446
dc.relation.projectIDDGA E-64
dc.relation.projectIDJAV/mjs-2006
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.keywordInvariant subspace problem
dc.subject.keywordInvariant subspaces
dc.subject.keywordComposition operators
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleMinimal invariant subspaces for composition operatorsen
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublication.latestForDiscoveryf56f1f11-4b62-4a87-80df-8dc195da1201

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gallardo04oficial.pdf
Size:
194.68 KB
Format:
Adobe Portable Document Format

Collections