Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Análisis de Sentimiento Basado en Aspectos (ABSA) aplicado a reseñas de restaurantes: Un estudio con modelos Transformer en Dianping

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

0025

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

El presente trabajo explora la aplicación de técnicas avanzadas de análisis de sentimiento basado en aspectos (ABSA) sobre reseñas textuales de restaurantes, con especial foco en la plataforma Dianping. Para ello, se utilizó un pipeline que integra modelos de lenguaje basados en Transformer (BERT y DeBERTa), permitiendo analizar tanto la polaridad global como la percepción detallada en aspectos clave como sabor, servicio y ambiente. Los resultados revelan una tendencia general positiva en la mayoría de las reseñas, con más del 90 % de opiniones favorables detectadas automáticamente. Sin embargo, la comparación con las puntuaciones explícitas mostró discrepancias importantes, especialmente en las categorías neutra y negativa. Además, el análisis ABSA permitió identificar correlaciones significativas entre los scores numéricos y los sentimientos inferidos, destacando el servicio como el aspecto con mayor coherencia. El estudio demuestra el valor añadido de ABSA y modelos Transformer para captar matices que no siempre son evidentes en las valoraciones numéricas, ofreciendo una herramienta poderosa para comprender mejor la satisfacción del cliente en el sector gastronómico.
This study explores the application of advanced aspect-based sentiment analysis (ABSA) techniques to restaurant reviews, focusing on the Dianping platform. A pipeline integrating Transformer-based language models (BERT and DeBERTa) was used to analyze both overall polarity and detailed perception across key aspects such as taste, service, and environment. The results reveal a general positive tendency in most reviews, with over 90 % of favorable opinions automatically detected. However, comparison with explicit numerical scores showed important discrepancies, especially in neutral and negative categories. Additionally, ABSA analysis identified significant correlations between numerical scores and inferred sentiments, with service emerging as the most consistent aspect. This work demonstrates the added value of ABSA and Transformer models in capturing subtle nuances not always reflected in numerical ratings, providing a powerful tool to better understand customer satisfaction in the restaurant sector.

Research Projects

Organizational Units

Journal Issue

Description

Keywords