Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Causal Inference on Education Policies: A Survey of Empirical Studies Using PISA, TIMSS and PIRLS

dc.contributor.authorCordero Ferrera, José Manuel
dc.contributor.authorCristóbal, Víctor
dc.contributor.authorSantín González, Daniel
dc.date.accessioned2023-06-18T05:39:37Z
dc.date.available2023-06-18T05:39:37Z
dc.date.issued2017
dc.descriptionPublicado como artículo: José M. Cordero, Ví­ctor Cristóbal y Daniel Santí­n, 2018. "Causal Inference On Education Policies: A Survey Of Empirical Studies Using Pisa, Timss And Pirls," Journal of Economic Surveys, Wiley Blackwell, vol. 32(3), pages 878-915, July. https://doi.org/10.1111/joes.12217
dc.description.abstractThe identification of the causal effects of educational policies is the top priority in recent education economics literature. As a result, a shift can be observed in the strategies of empirical studies. They have moved from the use of standard multivariate statistical methods, which identify correlations or associations between variables only, to more complex econometric strategies, which can help to identify causal relationships. However, exogenous variations in databases have to be identified in order to apply causal inference techniques. This is a far from straightforward task. For this reason, this paper provides an extensive and comprehensive overview of the literature using quasiexperimental techniques applied to three well-known international large-scale comparative assessments, such as PISA, PIRLS or TIMSS, over the period 2004-2016. In particular, we review empirical studies employing instrumental variables, regression discontinuity designs, difference in differences and propensity score matching to the above databases. Additionally, we provide a detailed summary of estimation strategies, issues treated and profitability in terms of the quality of publications to encourage further potential evaluations. The paper concludes with some operational recommendations for prospective researchers in the field.
dc.description.departmentDepto. de Economía Aplicada, Pública y Política
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/60405
dc.identifier.doi10.1111/joes.12217
dc.identifier.officialurlhttps://mpra.ub.uni-muenchen.de/76295/3/MPRA_paper_76295.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/22967
dc.issue.number76295
dc.journal.titleJournal of Economic Surveys
dc.language.isoeng
dc.page.final915
dc.page.initial878
dc.page.total56
dc.publisherUniversity Library of Munich
dc.relation.ispartofseriesMunich Personal RePEc Archive
dc.relation.projectID(ECO2014-53702-P)
dc.rights.accessRightsopen access
dc.subject.keywordLiterature review
dc.subject.keywordEducation
dc.subject.keywordCausal Inference
dc.subject.keywordSelection-bias
dc.subject.keywordInternational assessments
dc.subject.ucmEstadística
dc.subject.ucmEconometría (Estadística)
dc.subject.ucmEconomía pública
dc.subject.ucmEducación
dc.subject.unesco1209 Estadística
dc.subject.unesco5302.04 Estadística Económica
dc.subject.unesco58 Pedagogía
dc.titleCausal Inference on Education Policies: A Survey of Empirical Studies Using PISA, TIMSS and PIRLS
dc.typetechnical report
dspace.entity.typePublication
relation.isAuthorOfPublicationcb430bf0-8693-4ed4-9b2f-85b8443eb5e5
relation.isAuthorOfPublication.latestForDiscoverycb430bf0-8693-4ed4-9b2f-85b8443eb5e5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Causal Inference-Cordero (Dot tra. Open Access).pdf
Size:
537.89 KB
Format:
Adobe Portable Document Format