Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration

Loading...
Thumbnail Image
Full text at PDC
Publication date

2006

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Citation
1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). 2. H. Kano and S. Kawata, “Surface-plasmon sensor absorptionsensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994). 3. G. Orellana, ed., Book of Abstracts, EUROPT(R)ODE VII, (Madrid, Spain 2004). 4. S.-M. Tseng and C.-L. Chen, “Side-polished fibers,” Appl. Opt. 31, 3438–3447 (1992). 5. R. Alonso, F. Villuendas, J. Tornos, and J. Pelayo, “New ‘inline’ optical-fibre sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993). 6. Ó. Esteban, M. C. Navarrete, A. González-Cano, and E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38, 5267–5271 (1999). 7. F. J. Liao and J. T. Boyd, “Single-mode fiber coupler,” Appl. Opt. 20, 2731–2734 (1981). 8. L. A. Obando, D. J. Gentleman, J. R. Holloway, and K. S. Booksh, “Manufacture of robust surface plasmon resonance fiber optic based dip-probes,” Sens. Actuators B 100, 439–449 (2004). 9. C. Fernández-Valdivileso, E. Egozkue, I. R. Matías, F. J. Arregui, and C. Bariáin, “Experimental study of a thermochromic materila based optical fibre sensor for monitoring the temperatura of the water in several applications,” Sens. Actuators B 91, 231–240 (2003). 10. J. Villatoro, D. Monzón-Hernández, and E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003). 11. A. Díez, M. V. Andrés, and J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999). 12. R. P. Kenny, T. A. Birks, and K. P. Oakey, “Control of optical fiber taper shape,” Electron. Lett. 37, 1654–1656 (1991). 13. F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, M. C. Navarrete, and A. González-Cano, “Sensing properties of asymmetric doublelayer covered tapered fibers,” Appl. Opt. 43, 1615–1620 (2004). 14. A. González-Cano, F. J. Bueno, Ó. Esteban, N. Díaz-Herrera, and M. C. Navarrete, “Multiple surface plasmon resonante in uniform-waist tapered optical fibers with an asymmetric double-layer deposition,” Appl. Opt. 44, 519–526 (2005). 15. D. Monzón-Hernández and J. Villatoro, “High-resolution refractive index sensing by means of a multiple peak surface plasmon resonance optical fiber sensor,” Sens. Actuators B 115, 227–231 (2006). 16. R. C. Jorgenson, “A surface plasmon resonance side active retroreflecting sensor,” Sens. Actuators B 73, 236–248 (2001). 17. B. Grunwald and G. Holst, “Fibre optic refractive index microsensor based on white-light SPR excitation,” Sens. Actuators A 113, 174–180 (2004). 18. Y. Saito, J. J. Wang, D. A. Smith, and D. N. Batchelder, “A simple chemical method for the preparation of silver surfaces for efficient SERS,” Langmuir 18, 2959–2961 (2002). 19. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, and J. Tornos, “Single-mode optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994). 20. J. Villatoro, D. Monzón-Hernández, and D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fibre,” Electron. Lett. 40, 106–107 (2004).
Abstract
We present a configuration for surface plasmon resonance sensors based on uniform-waist tapered optical fibers and reflective elements. Once the fiber is tapered fulfilling the adiabatic criterion, a multilayer including a metallic medium is asymmetrically deposited on the uniform waist of the fiber. This feature provides the resonant excitation of multiple surface plasma waves. In addition, a mirror is produced at the fiber tip by a chemical Tollens reaction. In this way, the sensor operates in a reflective mode, more convenient for dip probes. When these sensors are spectrally interrogated, a high sensitivity of 10^4 refractive index units per nanometer is attained. These devices can be advantageously used for any kind of chemical sensing and biosensing.
Research Projects
Organizational Units
Journal Issue
Description
© 2006 Optical Society of America. This work has been partially supported by Comunidad de Madrid (Spain) projects SELENE (Sensores de fibra óptica reflectivos con tecnologia de campo evanescente), ref. GR/MAT/0620/2004, and ROMA (Nueva generación de Refractómetros de fibra Óptica para aplicaciones MedioAmbientales), ref. GR/AMB/0615/2004, and by Spanish project NESTOR (Nuevas tecnologias de sensores de fibra óptica para la observación del medio marino), Programa Nacional de Recursos Naturales, Ministerio de Ciencía y Tecnología, ref. CTM2004-03899.
Keywords
Collections