Topological robustness of non-saddle sets

dc.contributor.authorGiraldo, A.
dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T09:39:57Z
dc.date.available2023-06-20T09:39:57Z
dc.date.issued2009
dc.descriptionConference on General Topology in Honour of Peter Collins and Mike Reed, AUG 07-10, 2006, Oxford, ENGLAND
dc.description.abstractWe study in this paper preservation of dynamical and shape theoretical properties under Continuation for parametrized families of flows. We show that, although attractors continue. the same does not hold for non-saddle sets. However, when they continue, their shape is preserved in quite general settings, which include differentiable families of flows and regular non-saddle sets for general flows, not necessarily differentiable. We also Study how the continuation of a non-saddle set influences that of its dual non-saddle set.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16730
dc.identifier.doi10.1016/j.topol.2009.03.020
dc.identifier.issn0166-8641
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0166864109000868
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50142
dc.issue.number11
dc.journal.titleTopology and its Applications
dc.language.isoeng
dc.page.final1936
dc.page.initial1929
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordShape equivalence
dc.subject.keywordDynamical system
dc.subject.keywordIsolated invariant set
dc.subject.keywordContinuation of non-saddle sets
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleTopological robustness of non-saddle sets
dc.typejournal article
dc.volume.number156
dcterms.referencesA. Beck, On invariant sets, Ann. of Math. (2) 67 (1958) 99–103. N.P. Bhatia, G.P. Szego, Stability Theory of Dynamical Systems, Grundlehren Math. Wiss., vol. 161, Springer-Verlag, Berlin, 1970. S.A. Bogatyi, V.I. Gutsu, On the structure of attracting compacta, Differ. Urav. 25 (1989) 907–909 (in Russian). K. Borsuk, Theory of Shape, Monogr. Mat., vol. 59, Polish Scientific Publishers, Warszawa, 1975. C.C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math., vol. 38, Amer. Math. Soc., Providence, RI, 1976. C.C. Conley, The gradient structure of a flow, Ergodic Theory Dynam. Systems 8∗ (1988) 11–26. C.C. Conley, R.W. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971) 35–61. J.M. Cordier, T. Porter, Shape Theory. Categorical Methods of Approximation, Ellis Horwood Ser. Math. Appl., Ellis Horwood Ltd, Chichester, 1989. J. Dydak, J. Segal, Shape Theory: An Introduction, Lecture Notes in Math., vol. 688, Springer-Verlag, Berlin, 1978. R.W. Easton, Geometric Methods for Discrete Dynamical Systems, Oxford Engrg. Sci. Ser., vol. 50, Oxford University Press, New York, 1998. S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952. A. Giraldo, J.M.R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999) 739–746. A. Giraldo, M.A. Morón, F.R. Ruíz del Portal, J.M.R. Sanjurjo, Some duality properties of non-saddle sets, Topology Appl. 113 (2001) 51–59. B. Günther, J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993) 321–329. S. Mardešic, Strong Shape and Homology, Springer Monogr. Math., Springer, Berlin, 2000. S. Mardešic, J. Segal, Shape Theory, North-Holland, Amsterdam, 1982. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985) 1–41. J.M.R. Sanjurjo, An intrinsic description of shape, Trans. Amer. Math. Soc. 329 (1992) 625–636. J.M.R. Sanjurjo, Multihomotopy, Cech spaces of loops and shape groups, Proc. London Math. Soc. 69 (1994) 330–344. J.M.R. Sanjurjo, On the structure of uniform attractors, J. Math. Anal. Appl. 192 (1995) 519–528. J.M.R. Sanjurjo, Lusternik–Schnirelmann category and Morse decompositions, Mathematika 47 (2000) 299–305. J.M.R. Sanjurjo, Morse equations and unstable manifolds of isolated invariant sets, Nonlinearity 16 (2003) 1435–1448.
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo02.pdf
Size:
207.92 KB
Format:
Adobe Portable Document Format

Collections