Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Open core and small groups in dense pairs of topological structures

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Baro E, Martin-Pizarro A. Open core and small groups in dense pairs of topological structures. Annals of Pure and Applied Logic 2021;172:102858. https://doi.org/10.1016/j.apal.2020.102858.

Abstract

Dense pairs of geometric topological fields have tame open core, that is, every definable open subset in the pair is already definable in the reduct. We fix a minor gap in the published version of van den Dries's seminal work on dense pairs of o-minimal groups, and show that every definable unary function in a dense pair of geometric topological fields agrees with a definable function in the reduct, off a small definable subset, that is, a definable set internal to the predicate. For certain dense pairs of geometric topological fields without the independence property, whenever the underlying set of a definable group is contained in the dense-codense predicate, the group law is locally definable in the reduct as a geometric topological field. If the reduct has elimination of imaginaries, we extend this result, up to interdefinability, to all groups internal to the predicate

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections