Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Matrix product states with long-range localizable entanglement

dc.contributor.authorWahl, T. B.
dc.contributor.authorPérez García, David
dc.contributor.authorCirac, Juan I.
dc.date.accessioned2023-06-20T00:22:11Z
dc.date.available2023-06-20T00:22:11Z
dc.date.issued2012-12
dc.description.abstractWe derive a criterion to determine when a translationally invariant matrix product state (MPS) has long-range localizable entanglement, where that quantity remains finite in the thermodynamic limit. We give examples fulfilling this criterion and eventually use it to obtain all such MPS with bond dimension 2 and 3.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17609
dc.identifier.doi10.1103/PhysRevA.86.062314
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://link.aps.org/doi/10.1103/PhysRevA.86.062314
dc.identifier.relatedurlhttp://arxiv.org/abs/1206.4254
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42466
dc.issue.number6
dc.journal.titlePhysical Review A
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDQUEVADIS (233859)
dc.relation.projectIDQUITEMAD-CM (S2009/ESP-1594)
dc.relation.projectIDAQUTE
dc.relation.projectIDCHIST-ERA Project CQC
dc.relation.projectID(MTM2011-26912)
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordLocal operations
dc.subject.keywordSpin chains
dc.subject.keywordField
dc.subject.ucmFísica matemática
dc.titleMatrix product states with long-range localizable entanglement
dc.typejournal article
dc.volume.number86
dcterms.referencesF. Verstraete, M. Popp, and J. I. Cirac, Phys. Rev. Lett. 92, 027901 (2004). H.-J. Briegel, W. D�ur, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998). F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev. Lett. 92, 087201 (2004). R. Orus, and H.-H. Tu, Phys. Rev. B 83, 201101(R) (2011); S. O. Skrvseth, and S. D. Bartlett, Phys. Rev. A 80, 022316 (2009); J. K. Pachos, and M. B. Plenio, Phys. Rev. Lett. 93, 056402 (2004); B.-Q. Jin, and V. E. Korepin, Phys. Rev. A 69, 062314 (2004). J. Fiurasek, and L. Mi sta, Jr., Phys. Rev. A 75, 060302(R) (2007); A. Serani, G. Adesso, and F. Illuminati, Phys. Rev. A 71, 032349 (2005); G. Adesso, and F. Illuminati, Phys. Rev. Lett. 95, 150503 (2005). V. Subrahmanyama, and A. Lakshminarayanb, Phys. Lett. A 349, 164 (2006). L. Campos Venuti, and M. Roncaglia, Phys. Rev. Lett. 94, 207207 (2005); S. Sahoo, arXiv:1201.5620v4. The case of LRLE needs to be differentiated from the one of diverging entanglement length introduced in [1]: A divergence of the entanglement length only implies that the LE cannot decay exponentially with the spin distance, however it still may decay algebraically, c.f. [12]. D. Perez-Garca, F. Verstraete, M. M. Wolf, and J. I. Cirac, Quant. Inf. Comp. 7, 401 (2007). C. Schon, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf, Phys. Rev. Lett. 95, 110503 (2005). M. Fannes, B. Nachtergaele, R. F. Werner, Commun. Math. Phys. 144, 443 (1992). M. Popp, F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev. A 71, 042306 (2005). O. F. Sylju asen, Phys. Lett. A 322, 25 (2004); M. Popp, F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Appl. Phys. B 82, 225 (2006); P. Androvitsaneas, E. Paspalakis, and A. F. Terzis, Ann. Phys. 327, 212 (2012). W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998). F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Phys. Rev. Lett. 92, 087201 (2004). Note that for D = 2 all isometries are unitaries, i.e., according to (11) all matrices Ai have to be proportional to unitaries themselves. H. Hironaka, Ann. Math. 79, 109 (1964); B. Buchberger, Austria, Universitat Innsbruck, Diss., 1965. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Phys. Rev. A 53, 2046 (1996).
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1206.4254v1.pdf
Size:
452.41 KB
Format:
Adobe Portable Document Format

Collections