Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Coherent motions and clusters in a dissipative Morse ring chain

dc.contributor.authorMakarov Slizneva, Valeriy
dc.contributor.authorDunkel, J.
dc.contributor.authorEbeling, Werner
dc.contributor.authorErdmann, U
dc.date.accessioned2023-06-20T17:02:08Z
dc.date.available2023-06-20T17:02:08Z
dc.date.issued2002
dc.description.abstractWe study a one-dimensional ring chain of length L with N particles interacting via Morse potentials and influenced by dissipative forces (passive and active friction). We show that by negative friction the system can be driven far from the thermodynamic equilibrium states. For over-critical pumping with free energy several types of coherent motions including uniform rotations, optical oscillations and waves emerge in the ring. We also show the existence of a critical particle density n(c) = N/L-c, below that the particles spontaneously organize into clusters which can actively rotate. Additionally, the influence of white noise on the clustering is discussed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDFG
dc.description.sponsorshipHumboldt-Mutis Foundation
dc.description.sponsorshipSpanish Ministry of Science and Technology.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16910
dc.identifier.doi10.1142/S0218127402005923
dc.identifier.issn0218-1274
dc.identifier.officialurlhttp://www.worldscientific.com/doi/pdf/10.1142/S0218127402005923
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57663
dc.issue.number11
dc.journal.titleInternational Journal of Bifurcation and Chaos
dc.language.isoeng
dc.page.final2377
dc.page.initial2359
dc.publisherWorld Scientific Publishing
dc.relation.projectIDSfB555
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordNonlinear friction
dc.subject.keywordActive Brownian particles
dc.subject.keywordLennard-Jones-like interactions
dc.subject.keywordCluster formation
dc.subject.keywordBrownian particles
dc.subject.keywordEnergy depots
dc.subject.keywordToda
dc.subject.keywordExcitation
dc.subject.keywordSolitons
dc.subject.keywordLattice
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleCoherent motions and clusters in a dissipative Morse ring chain
dc.typejournal article
dc.volume.number12
dcterms.referencesBolterauer, H. & Opper, M. [1981] \Solitons in the statistical mechanics of the Toda lattice," Z. Phys. B42, 155-161. Christov, C. I. & Velarde, M. G. [1995] \Dissipative solitons," Physica D86, 323-347. Chu, X. L. & Velarde, M. G. [1991] \Korteweg-de Vries soliton excitation in Benard-Marangoni convection," Phys. Rev. A43, 1094-1096. Ebeling, W., Jenssen, M. & Romanowsky, Y. M. [1989] \Irreversible processes and selforganization," Teubner Texte Physik, Vol. 23 (Teubner Leipzig), pp. 7-24. Ebeling, W. & Jenssen, M. [1991] \Soliton-assisted activation processes," Ber. Bunsenges. Phys. Chem. 95, 1356-1362. Ebeling, W., Schweitzer, F. & Tilch, B. [1999] \Active Brownian particles with energy depots modelling animal mobility," BioSyst. 49, 17-29. Ebeling, W., Erdmann, U., Dunkel, J. & Jenssen, M. [2000] \Nonlinear dynamics and fluctuations of dissipative Toda chains," J. Stat. Phys. 101, 443-457. Erdmann, U., Ebeling, W., Schimansky-Geier, L. & Schweitzer, F. [2000] \Brownian particles far from equilibrium," Eur. Phys. J. B15, 105-113. Feynman, R. P. [1972] Statistical Mechanics (Benjamin Mass.). Guckenheimer, J. & Holmes, P. [1983] Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 (Springer). Jenssen,M. & Ebeling,W. [2000] \Distribution functions and excitation spectra of Toda systems at intermediate temperatures," Physica D141, 117-132. Kac, M., Uhlenbeck, G. E. & Hemmer, P. C. [1963] \On the van der Waals theory of the vapor-liquid equilibrium," J. Math. Phys. 4, 216-228. Landa, P. [1996] Nonlinear Oscillations and Waves in Dynamical Systems (Kluwer Academic Publishers, Dordrecht). Makarov, V., Ebeling, W. & Velarde, M. [2000] \Solitonlike waves on dissipative Toda lattices," Int. J. Bifurcation and Chaos 10, 1075-1089. Makarov, V. A., del Rio, E., Ebeling, W. & Velarde, M. G. [2001] \Dissipative Toda-Rayleigh lattice and its oscillatory modes," Phys. Rev. E64, 036601. Percus, J. K. [1987] \Exactly solvable models of classical many-body systems," Studies in Statist. Mech. 13, 1-158. Rayleigh, J. W. [1945] The Theory of Sound, Vol. 1, 2nd edition (Dover, NY). Schweitzer, F., Ebeling, W. & Tilch, B. [1998] \Complex motion of Brownian particles with energy depots," Phys. Rev. Lett. 80(23), 5044-5047. Toda, M. [1983] Nonlinear Waves and Solitons (Kluwer Academic Publishing, Dordrecht). Toda, M. & Saitoh, N. [1983] \The classical specific heat of the exponential lattice," J. Phys. Soc. Japan 52, 3703-3705. Wiggins, S. [1996] Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, Dordrecht).
dspace.entity.typePublication
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscoverya5728eb3-1e14-4d59-9d6f-d7aa78f88594

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Makarov30.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format

Collections