Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Set of Points at Infinity of a Polynomial Image of Rn

dc.contributor.authorFernando Galván, José Francisco
dc.contributor.authorUeno, Carlos
dc.date.accessioned2023-06-19T13:27:51Z
dc.date.available2023-06-19T13:27:51Z
dc.date.issued2014
dc.description.abstractIn this work we prove that the set of points at infinity of a semialgebraic set that is the image of a polynomial map is connected. This result is no longer true in general if is a regular map. However, it still works for a large family of regular maps that we call quasi-polynomial maps.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish GR
dc.description.sponsorshipGAAR Grupos
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28337
dc.identifier.doi10.1007/s00454-014-9620-7
dc.identifier.issn0179-5376
dc.identifier.officialurlhttp://arxiv.org/pdf/1212.1811v3.pdf
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33776
dc.issue.number4
dc.journal.titleDiscrete & computational geometry
dc.language.isoeng
dc.page.final611
dc.page.initial583
dc.publisherSpringer
dc.relation.projectIDMTM2011-22435
dc.relation.projectIDUCM 910444
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordPolynomial and regular maps and images
dc.subject.keywordQuasi-polynomial maps
dc.subject.keywordSet of points at infinity
dc.subject.keywordConnectedness.
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the Set of Points at Infinity of a Polynomial Image of Rn
dc.typejournal article
dc.volume.number52
dcterms.references[]BCR J. Bochnak, M. Coste, M.F. Roy: Real algebraic geometry. Ergeb. Math. 36, Springer-Verlag, Berlin: 1998. []F J.F. Fernando: On the one dimensional polynomial and regular images of Rn. J. Pure Appl.Algebra 218 (2014), no. 9, 1745–1753. []FG1 J.F. Fernando, J.M. Gamboa: Polynomial images of Rn. J. Pure Appl. Algebra 179 (2003), no. 3,241–254. []FG2 J.F. Fernando, J.M. Gamboa: Polynomial and regular images of Rn. Israel J. Math. 153 (2006),61–92. []FG3 J.F. Fernando, J.M. Gamboa: On the irreducible components of a semialgebraic set. Internat. J.Math. 23 (2012), no. 4, 1250031 (40 pages). []FGU1 J.F. Fernando, J.M. Gamboa, C. Ueno: On convex polyhedra as regular images of Rn. Proc. Lond.Math. Soc. (3) 103 (2011) 847–878. []FGU2 J.F. Fernando, J.M. Gamboa, C. Ueno: Properties of the boundary of polynomial and regular images of Rn. Mathematical contributions in honor of Juan Tarres, 159–178, Univ. Complut.Madrid, Fac. Mat., adrid: 2012. []FU1 J.F. Fernando, C. Ueno: On complements of convex polyhedra as polynomial and regular images of Rn. Int. Math. Res. Not. IMRN XXX (2013, accepted), no. X, XXX-XXX http://imrn.oxfordjournals.org/content/early/2013/06/17/imrn.rnt112.full .pdf?keytype=ref&ijkey=PiOgJzspWYsUzGp []FU2 J.F. Fernando, C. Ueno: On the complements of 3-dimensional convex polyhedra as polynomial images of R3. Internat. J. Math. XXX (2014, accepted), no. X, XXX-XXX. []G J.M. Gamboa: Reelle algebraische Geometrie, June,10th ´ 16th (1990), Oberwolfach. []Ha J. Harris: Algebraic Geometry. A first course. raduate Texts in Mathematics, 133. Springer-Verlag, New York: 1992. []H1 R. Hartshorne: Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, 156 Springer-Verlag, erlin-New York: 1970. []H2 R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, 52 Springer-Verlag, New York-Heidelberg:1977. []J1 Z. Jelonek: Testing sets for properness of olynomial mappings. Math. Ann. 315 (1999), no. 1,1–35. []J2 Z. Jelonek: Geometry of real polynomial mappings. Math. Z., 239 (2002), no. 2, 321–333. []JK Z. Jelonek, K. Kurdyka: Reaching generalized critical values of a polynomial. Math. Z. (2014, to appear), no. X, XXX-XXX. arXiv:1203.0539v2.pdf []M D. Mumford: Algebraic geometry. I. Complex projective varieties. Grundlehren der Mathematis-chen issenschaften, 221. Springer-Verlag, Berlin-New York: 1976. []P S. Pinchuk: A counterexample to the real Jacobian Conjecture, Math. Z. 217 (1994), 1–4. []Sh1 I.R. Shafarevich: Basic Algebraic Geometry I. Varieties in projective space. Second edition. Trans-lated from the 1988 Russian edition and with notes by iles Reid. Springer-Verlag, Berlin: 1994. []Sh2 I.R. Shafarevich: Basic Algebraic Geometry II. Schemes and complex manifolds. Second edition. Translated from the 1988 Russian edition by Miles Reid. Springer-erlag, Berlin: 1994. []S E.H. Spanier: Algebraic topology. Springer-Verlag, New York-Berlin: 1981. []U1 C. Ueno: A note on boundaries of open polynomial images of R2. Rev. Mat. Iberoam. 24 (2008),981-988. []U2 C. Ueno: On convex polygons and their complements as images of regular and polynomial maps of R2. J. Pure Appl. Algebra 216 (2012), no. 11, 2436–2448.
dspace.entity.typePublication
relation.isAuthorOfPublication499732d5-c130-4ea6-8541-c4ec934da408
relation.isAuthorOfPublication.latestForDiscovery499732d5-c130-4ea6-8541-c4ec934da408

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fernando103.pdf
Size:
270.09 KB
Format:
Adobe Portable Document Format

Collections