Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Vector spaces of non-measurable functions

dc.contributor.authorGarcía-Pacheco, F.J.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T10:33:22Z
dc.date.available2023-06-20T10:33:22Z
dc.date.issued2006
dc.description.abstractWe show that there exists an infinite dimensional vector space every non-zero element of which is a non-measurable function. Moreover, this vector space can be chosen to be closed and to have dimension beta for any cardinality beta. Some techniques involving measure theory and density characters of Banach spaces are used.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20209
dc.identifier.doi10.1007/s10114-005-0726-y
dc.identifier.issn1439-8516
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2Fs10114-005-0726-y
dc.identifier.relatedurlhttp://www.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50492
dc.issue.number6
dc.journal.titleActa Mathematica Sinica, English Series
dc.language.isoeng
dc.page.final1808
dc.page.initial1805
dc.publisherSpringer Heidelberg
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordLineability
dc.subject.keywordSpaceability Non-measurable functions
dc.subject.keywordDensity character
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleVector spaces of non-measurable functions
dc.typejournal article
dc.volume.number22
dcterms.referencesEnflo, P., Gurariy, V.: On lineability and spaceability of sets in function spaces, preprint, 2002 Aron, R., Gurariy, V., Seoane-Sep´ulveda, J. B.:Lineability and spaceability of sets of functions on R. Proc.Amer.Math. Soc., 133, 795–803 (2005) Gurariy, V. I.: Subspaces and bases in spaces of continuous functions (Russian). Dokl. Akad. Nauk SSSR,167, 971–973 (1966) Gurariy, V. I.: Linear spaces composed of nondifferentiable functions. C. R. Acad. Bulgare Sci. 44(5),13–16 (1991) Fonf, V., Gurariy, V., Kadec, V.: An infinite dimensional subspace of C[0, 1] consisting of nowhere differentiable functions. C. R. Acad. Bulgare Sci., 52, 11–12, 13–16 (1999) Rodrıguez-Piazza, L.: Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proc. Amer. Math. Soc., 123 12, 3649–3654 (1995) Hencl, S.: Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Holder functions. Proc. Amer.Math. Soc., 128 12, 3505–3511 (2000) Aron, R., Seoane-Sepulveda, J. B.: Algebrability of the set of everywhere surjective functions on C, preprint,2005 Rana, I. K.: An introduction to measure and integration,GSM 45, 2nd edition, American Mathematical Society, 2002 Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I and II, Classics in Mathematics, Springer-Verlag,Berlin,Heidelberg, New York, 1996
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane43.pdf
Size:
141.35 KB
Format:
Adobe Portable Document Format

Collections