Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the number of ovals of a symmetry of a compact Riemann surface

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.contributor.authorBujalance, E.
dc.contributor.authorCirre, Francisco
dc.contributor.authorGromadzki, G.
dc.date.accessioned2023-06-20T09:35:01Z
dc.date.available2023-06-20T09:35:01Z
dc.date.issued2008
dc.description.abstractThe set of stationary points of the anticonformal involution (reflection) of a Riemann surface is called an oval. In this paper the total number of ovals of all reflections on a surface is counted provided the group of conformal automorphisms of the surface is cyclic. The bounds for this number are also given.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Sciences[SAB2005-0049]; [MTM2005-01637]; [MTM2005-20865]
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15393
dc.identifier.doi10.4171/RMI/540
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://projecteuclid.org/euclid.rmi/1218475347
dc.identifier.relatedurlhttp://projecteuclid.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49963
dc.issue.number2
dc.journal.titleRevista Matemática Iberoamericana
dc.page.final405
dc.page.initial391
dc.publisherUniversidad Autónoma Madrid
dc.relation.projectIDE. Bujalance is partially supported by MTM2005-01637. F. J. Cirre is partially supported by MTM2005-01637. J. M. Gamboa
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordRiemann surface
dc.subject.keywordsymmetries
dc.subject.keywordovals
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the number of ovals of a symmetry of a compact Riemann surface
dc.typejournal article
dc.volume.number24
dcterms.referencesBujalance, E. and Conder, M. D. E.: On cyclic groups of automorphisms of Riemann surfaces. J. London Math. Soc. (2) 59 (1999), no. 2, 573–584. Bujalance, E., Costa, A. F. and Singerman, D.: Application of Hoare’s theorem to symmetries of Riemann surfaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 307–322. Bujalance, E., Etayo, J. J., Gamboa, J. M. and Gromadzki, G.: Automorphism Groups of Compact Bordered Klein Surfaces. Lecture Notes in Math. 1439. Springer-Verlag, Berlin, 1990. Gromadzki, G.: On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces. J. Purc Appl. Algebra 121 (1997), no. 3, 253–269. Gromadzki, G.: On ovals on Riemann surfaces. Rev. Mat. Iberoamericana 16 (2000), no. 3, 515–527. Harnack, A.: U¨ ber die Vieltheiligkeit der ebenen algebraischen Kurven. Math. Ann. 10 (1876), 189–198. Klein, F.: U¨ ber Realita¨tsverha¨ltnisse bei der einem beliebigen Geschlechte zugeho¨rigen Normalkurve der '. Math. Ann. 42 (1893), no. 1, 1–29. Izquierdo, M. and Singerman, D.: Pairs of symmetries of Riemann surfaces. Ann. Acad. Sci. Fenn. Math. 23 (1998), no. 1, 3–24. Meleko˘glu, A.: Symmetries of Riemann Surfaces and Regular Maps. Doctoral thesis, Faculty of Mathematical Studies, University of Southampton, 1998. Nakamura, G.: The existence of symmetric Riemann surfaces determined by cyclic groups. Nagoya Math. J. 151 (1998), 129–143. Natanzon, S. M.: Finite groups of homeomorphisms of surfaces, and real forms of complex algebraic curves. (Russian). Trudy Moskov. Mat. Obshch. 51 (1988), 3–53, 258. Translation in Trans. Moscow Math. Soc. (1989), 1–51. Natanzon, S. M.: On the total number of ovals of real forms of complex algebraic curves. Uspekhi Mat. Nauk (1) 35, 1980, 207–208. (Russian Math. Surveys (1) 35, 1980, 223–224. Singerman, D.: On the structure of non-euclidean crystallographic groups. Proc. Cambridge Philos. Soc. 76 (1974), 233–240. Singerman, D.: Mirrors on Riemann surfaces. In Second International Conference on Algebra (Barnaul, 1991), 411–417. Contemp. Math. 184. Amer. Math. Soc., Providence, RI, 1995. Weichold, G.: U¨ ber symmetrische Riemannsche Fla¨chen und die Periodizita¨tsmodulen der zugerh¨origen Abelschen Normalintegrale erstes Gattung. Dissertation, Leipzig, 1883.
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Collections