Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

High-energy tails for inelastic Maxwell models

dc.contributor.authorErnst, M. H.
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T18:44:24Z
dc.date.available2023-06-20T18:44:24Z
dc.date.issued2002-04
dc.description© EDP Sciences. The authors want to thank A. Baldassarri et al. for useful correspondence and J. R. Dorfman for informing them about the negative rate of irreversible entropy production on an attractor in Chaos Theory. ME wants to thank E. Ben-Naim for having stimulated his interest in dissipative one-dimensional Maxwell models during his stay at CNLS, Los Alamos National Laboratories in August 2000. Moreover, ME acknowledges support of the Office for International Relations of the Universidad Complutense de Madrid for a visit to UCM during September and October 2001, where part of this work was done. RB acknowledges financial support from DGES (Spain), grant BFM2001-0291.
dc.description.abstractMonte Carlo simulations of the spatially homogeneous Boltzmann equation for inelastic Maxwell molecules, performed by Baldassarri et al. (cond-mat/0111066), have shown that general classes of initial distributions evolve for large times into a singular nonlinear scaling solution with a power law tail. By applying an asymptotic analysis we derive these results from the nonlinear Boltzmann equation, and obtain a transcendental equation from which the exponents, appearing in the power law tails, can be calculated. The dynamics of this model describes a dissipative flow in v-space, which drives the system to an attractor, the nonlinear scaling solution, with a constant negative rate of irreversible entropy production, given by -1/4 (1- alpha(2)), where alpha is the coefficient of restitution.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipOffice for International Relations of the Universidad Complutense de Madrid
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21392
dc.identifier.doi10.1209/epl/i2002-00622-0
dc.identifier.issn0295-5075
dc.identifier.officialurlhttp://iopscience.iop.org/0295-5075/58/2/182/pdf/0295-5075_58_2_182.pdf
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.relatedurlhttp://seneca.fis.ucm.es/brito/EuroPhysLett_58_182_2002.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58484
dc.issue.number2
dc.journal.titleEurophysics Letters
dc.language.isoeng
dc.page.final187
dc.page.initial182
dc.publisherEDP Sciences
dc.relation.projectIDBFM2001-0291
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordDynamics
dc.subject.keywordFlow
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleHigh-energy tails for inelastic Maxwell models
dc.typejournal article
dc.volume.number58
dcterms.references[1] Krook T. and Wu T. T., Phys. Rev. Lett., 36 (1976) 1107. [2] Collins G. P., Sci. Am., 284 (2001) 17. [3] van Noije T. P. C. and Ernst M. H., Granular Matter, 1 (1998) 57, and cond-mat/9803042. [4] Esipov S. E. and Pöschel T., J. Stat. Phys., 86 (1997) 1385. [5] Brey J. J., Ruiz M. Montero J. and Cubero D., Phys. Rev. E, 54 (1996) 3664. [6] Montanero J. M. and Santos A., Granular Matter, 2 (2000) 53 and cond-mat/0002323. [7] Biben Th., Martin Ph. A. and Piasecki J., preprint July 2001. [8] Carrillo J. A., Cercignani C. and Gamba I. M., Phys. Rev. E, 62 (2000) 7700. [9] Cercignani C., J. Stat. Phys., 102 (2001) 1407. [10] Bobylev A. V. and Cercignani C., J. Stat. Phys., 106 (2002) 547. [11] Bobylev A. V., Carrillo J. A. and Gamba I. M., J. Stat. Phys., 98 (2000) 743. [12] Ben-Naim E. and Krapivsky P. L., Phys. Rev. E, 61 (2000) R5. [13] Acedo L., Santos A. and Bobylev A. V., cond-mat/0109490. [14] Baldassarri A., Marini U. Bettolo Marconi and Puglisi A., cond-mat/0105299, 15 May 2001. [15] Krapivsky P. L. and Ben-Naim E., cond-mat/0111044, 2 November 2001. [16] Baldassarri A., Marini U. Bettolo Marconi and Puglisi A., cond-mat/0111066, 5 November 2001. [17] Ernst M. H. and Brito R., cond-mat/0111093, 6 November 2001. [18] Brey J. J., Dufty J. W. and Santos A., J. Stat. Phys., 87 (1997) 1051. [19] Haff P. K., J. Fluid. Mech., 134 (1983) 40. [20] Goldhirsch I. and Zanetti G., Phys. Rev. Lett., 70 (1993) 1619. [21] Baldassarri A., Marini Bettolo Marconi U. and Puglisi A., private communication. [22] Ernst M. H. and Brito R., cond-mat/0112417, 24 December 2001. [23] Ruelle D., J. Stat. Phys., 95 (1999) 393. [24] Dorfman J. R., An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lect. Notes Phys., Vol. 14, Sect. 13.4 (Cambridge University Press) 1999. [25] Bobylev A. V., Sov. Phys. Dokl., 20 (1976) 820; 21 (1976) 632.
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito 46NO.pdf
Size:
113.62 KB
Format:
Adobe Portable Document Format

Collections