Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Translational Framework Predicting Tumour Response in Gemcitabine-Treated Patients with Advanced Pancreatic and Ovarian Cancer from Xenograft Studies

dc.contributor.authorGarcía-Cremades Mira, María
dc.contributor.authorPitou, Celine
dc.contributor.authorIversen, Philip W.
dc.contributor.authorFernández de Trocóniz, Iñaki
dc.date.accessioned2024-02-09T17:27:23Z
dc.date.available2024-02-09T17:27:23Z
dc.date.issued2019-01-31
dc.description.abstractThe aim of this evaluation was to predict tumour response to gemcitabine in patients with advanced pancreas or ovarian cancer using pre-clinical data obtained from xenograft tumour-bearing mice. The approach consisted of building a translational model combining pre-clinical pharmacokinetic–pharmacodynamic (PKPD) models and parameters, with dosing paradigms used in the clinics along with clinical PK models to derive tumour profiles in humans driving overall survival. Tumour growth inhibition simulations were performed using drug effect parameters obtained from mice, system parameters obtained from mice after appropriate scaling, patient PK models for gemcitabine and carboplatin, and the standard dosing schedules given in the clinical scenario for both types of cancers. Tumour profiles in mice were scaled by body weight to their equivalent values in humans. As models for survival in humans showed that tumour size was the main driver of the hazard rate, it was possible to describe overall survival in pancreatic and ovarian cancer patients. Simulated tumour dynamics in pancreatic and ovarian cancer patients were evaluated using available data from clinical trials. Furthermore, calculated metrics showed values (maximal tumour regression [0–17%] and tumour size ratio at week 12 with respect to baseline [− 9, − 4.5]) in the range of those predicted with the clinical PKPD models. The model-informed Drug Discovery and Development paradigm has been successfully applied retrospectively to gemcitabine data, through a semi-mechanistic translational approach, describing the time course of the tumour response in patients from pre-clinical studies.eng
dc.description.departmentDepto. de Farmacia Galénica y Tecnología Alimentaria
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.sponsorshipFederación Europea de Industrias y Asociaciones Farmacéuticas
dc.description.sponsorshipAcademic and SME partners
dc.description.statuspub
dc.identifier.citationGarcia-Cremades M, Pitou C, Iversen PW, Troconiz IF. Translational Framework Predicting Tumour Response in Gemcitabine-Treated Patients with Advanced Pancreatic and Ovarian Cancer from Xenograft Studies. AAPS J 2019;21:23. https://doi.org/10.1208/s12248-018-0291-9.
dc.identifier.doi10.1208/s12248-018-0291-9
dc.identifier.issn1550-7416
dc.identifier.officialurlhttps://doi.org/10.1208/s12248-018-0291-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/101031
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/115156
dc.rights.accessRightsrestricted access
dc.subject.keywordMID3
dc.subject.keywordoncology
dc.subject.keywordPKPD modelling
dc.subject.keywordtranslational
dc.subject.keywordtumour size
dc.subject.ucmFarmacia
dc.subject.unesco32 Ciencias Médicas
dc.titleTranslational Framework Predicting Tumour Response in Gemcitabine-Treated Patients with Advanced Pancreatic and Ovarian Cancer from Xenograft Studies
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication43744e97-04e3-4355-9270-45429c487f5f
relation.isAuthorOfPublication.latestForDiscovery43744e97-04e3-4355-9270-45429c487f5f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2019Garcia-Cremades.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format

Collections