Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Interstitial Ti for intermediate band formation in Ti-supersaturated silicon

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.date.accessioned2023-06-20T03:40:47Z
dc.date.available2023-06-20T03:40:47Z
dc.date.issued2012-12-01
dc.description© 2012 American Institute of Physics. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments, Nanotechnology and Surface Analysis Services of the Universidad de Vigo C.A.C.T.I. for ToF-SIMS measurements, and C.M.A.M. of the Universidad Autónoma de Madrid for RBS measurements. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. D. Pastor and J. Olea acknowledge Professor A. Luque and Professor A. Martí for the useful discussions and guidance and also acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471).
dc.description.abstractWe have analyzed by means of Rutherford backscattering spectrometry (RBS) the Ti lattice location and the degree of crystalline lattice recovery in heavily Ti implanted silicon layers subsequently pulsed laser melted (PLM). Theoretical studies have predicted that Ti should occupy interstitial sites in silicon for a metallic-intermediate band (IB) formation. The analysis of Ti lattice location after PLM processes is a crucial point to evaluate the IB formation that can be clarifyied by means of RBS measurements. After PLM, time-of-flight secondary ion mass spectrometry measurements show that the Ti concentration in the layers is well above the theoretical limit for IB formation. RBS measurements have shown a significant improvement of the lattice quality at the highest PLM energy density studied. The RBS channeling spectra reveals clearly that after PLM processes Ti impurities are mostly occupying interstitial lattice sites. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768274]
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipMICINN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25806
dc.identifier.doi10.1063/1.4768274
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4768274
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44229
dc.issue.number11
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDNUMANCIA-2-CM (S-2009/ENE-1477)
dc.relation.projectID(JCI-2011-10402)
dc.relation.projectID(JCI-2011-11471)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordSolar-Cells
dc.subject.keywordEfficiency.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleInterstitial Ti for intermediate band formation in Ti-supersaturated silicon
dc.typejournal article
dc.volume.number112
dcterms.references1) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 2) W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). 3) N. López, A. Reichertz, K. M. Yu, K. Campman, and W. Waluckiewicz, Phys. Rev. Lett. 106, 028701 (2011). 4) A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146 (2012). 5) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 6) B. P. Bob, A. Kohno, S. Charnvanichborikarn, J. M. Warrender, I. Umezu, M. Tabbal, J. S. Williams, and M. J. Aziz, J. Appl. Phys. 107, 123506 (2010). 7) G. González-Díaz, J. Olea, I. Mártil, D. Pastor, A. Martí, E. Antolín, and A. Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009). 8) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 79, 165203 (2010). 9) D. Pastor, J. Olea, Á. del Prado, E. García-Hemme, I. Mártil, G. González-Díaz, J. Ibáñez, R. Cuscó, and L. Artús, Semicond. Sci. Technol. 26, 115003 (2011). 10) J. Olea, G. González-Díaz, D. Pastor, I. Mártil, A. Martí, E. Antolín, and A. Luque, J. Appl. Phys. 109, 063718 (2011). 11) D. Pastor, J. Olea, Á. del Prado, E. García-Hemme, R. García-Hernansanz, and G. González-Díaz, Sol. Energy Mater. Sol. Cells 104, 159–164 (2012). 12) J. Olea, Á. del Prado, D. Pastor, I. Mártil, and G. González-Díaz, J. Appl. Phys. 109, 113541 (2011). 13) J. F. Ziegler et al., SRIM–The Stopping and Range of Ions in Matter (SRIM, 2011). 14) M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik, Garching, Germany, 1997. 15) S. Hoccine and D. Mathiot, Appl. Phys. Lett. 53, 1269 (1988). 16) K.M. Yu, W. Waluckiewickz, J. Wu, W. Shan, J.W. Beeman, M. A. Scarpulla, O. D. Dubon, and P. Becla, Phys. Rev. Lett. 91, 246403 (2003). 17) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 18) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,08libre.pdf
Size:
765.85 KB
Format:
Adobe Portable Document Format

Collections