Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New Data and Computational Methods Opportunities to Enhance the Knowledge Base of Tourism

dc.book.titleHandbook of Computational Social Science for Policy
dc.contributor.authorRomanillos Arroyo, Gustavo
dc.contributor.authorMoya Gómez, Borja
dc.contributor.editorBertolini, Eleonora
dc.contributor.editorFontana, Matteo
dc.contributor.editorGabrielli, Lorenzo
dc.contributor.editorSignorelli, Serena
dc.contributor.editorVespe, Michele
dc.date.accessioned2024-01-23T12:58:21Z
dc.date.available2024-01-23T12:58:21Z
dc.date.issued2023
dc.description.abstractTourism is becoming increasingly relevant at different levels, intensifying its impact on the environmental, the economic and the social spheres. For this reason, the study of this rapidly evolving sector is important for many disciplines and requires to be quickly updated. This chapter provides an overview and general guidelines on the potential use of new data and computational methods to enhance tourism’s knowledge base, encourage their institutional adoption and, ultimately, foster a more sustainable tourism. First, the chapter delivers a brief review of the literature on new data sources and innovative computational methods that can significantly improve our understanding of tourism, addressing the big data revolution and the emergence of new analytic tools, such as artificial intelligence (AI) or machine learning (ML). Then, the chapter provides some guidelines and applications of these new datasets and methods, articulated around three topics: (1) measuring the environmental impacts of tourism, (2) assessing the socio-economic resilience of the tourism sector and (3) uncovering new tourists’ preferences, facilitating the digital transition and fostering innovation in the tourism sector.eng
dc.description.departmentDepto. de Geografía
dc.description.facultyFac. de Geografía e Historia
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationRomanillos, G., Moya-Gómez, B. (2023). New Data and Computational Methods Opportunities to Enhance the Knowledge Base of Tourism. In: Bertoni, E., Fontana, M., Gabrielli, L., Signorelli, S., Vespe, M. (eds) Handbook of Computational Social Science for Policy. Springer, Cham. https://doi.org/10.1007/978-3-031-16624-2_19
dc.identifier.doi10.1007/978-3-031-16624-2_19
dc.identifier.isbn978-3-031-16623-5
dc.identifier.isbn978-3-031-16624-2
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-16624-2_19
dc.identifier.urihttps://hdl.handle.net/20.500.14352/94762
dc.language.isoeng
dc.publisherSpringer
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.6-022.59:338.48
dc.subject.keywordTourism
dc.subject.keywordBig Data
dc.subject.keywordNew data sources
dc.subject.ucmTurismo
dc.subject.unesco5312.90 Economía Sectorial: Turismo
dc.subject.unesco5401 Geografía Económica
dc.subject.unesco5403 Geografía Humana
dc.titleNew Data and Computational Methods Opportunities to Enhance the Knowledge Base of Tourism
dc.typebook part
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication7af12201-dd9c-4deb-8f3e-16bacc43e6dd
relation.isAuthorOfPublication91356264-4e7c-49e2-90b0-070d2d420902
relation.isAuthorOfPublication.latestForDiscovery7af12201-dd9c-4deb-8f3e-16bacc43e6dd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New_Data_and_Computational_Methods_Opportunities.pdf
Size:
517.16 KB
Format:
Adobe Portable Document Format