Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

High‐Throughput Screening of Low‐Bandgap Organic Semiconductors for Photovoltaic Applications: In the Search of Correlations

dc.contributor.authorTorimtubun, Abat Amelenan
dc.contributor.authorAlonso‐Navarro, Matías J.
dc.contributor.authorQuesada‐Ramírez, Arianna
dc.contributor.authorRodríguez‐Martínez, Xabier
dc.contributor.authorSegura Castedo, José Luis
dc.contributor.authorGoñi, Alejandro R.
dc.contributor.authorCampoy‐Quiles, Mariano
dc.date.accessioned2024-07-08T16:06:02Z
dc.date.available2024-07-08T16:06:02Z
dc.date.issued2024-06-14
dc.description.abstractLow‐bandgap nonfullerene acceptors (NFAs) offer a unique potential for photovoltaic (PV) applications, such as transparent PV and agrivoltaics. Evaluating each new PV system to achieve the optimum thickness, microstructure, and device performance is, however, a complex multiparametric challenge with large time and resource requirements. Herein, the PV potential of low‐bandgap donor and NFA materials by combining high‐throughput screening and statistical methods is evaluated. The use of thickness gradients (20–600 nm) facilitates the fabrication of more than 2000 doctor‐bladed devices from 24 different low‐bandgap blend combinations. The corresponding power conversion efficiencies varies significantly, from 0.06% to 10.45% across materials and thicknesses. The self‐consistency of the large dataset allows to perform a parameter sensitivity study as well as parameter correlation analysis. These reveal that the choice of materials and energy alignment‐related features (i.e., electron affinity offset, ionization energy offset, bandgap, and energy loss) has the largest influence on final device performance, while processing conditions appear less important for the final efficiencies. Our study demonstrates that high‐throughput experimentation is a perfect match for correlation analyses in order to gain a statistically meaningful understanding of these systems, potentially accelerating the discovery of new materials.</jats:p>
dc.description.departmentDepto. de Química Orgánica
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationTorimtubun, A.A.A., Alonso-Navarro, M.J., Quesada-Ramírez, A., Rodríguez-Martínez, X., Segura, J.L., Goñi, A.R. and Campoy-Quiles, M. (2024), High-Throughput Screening of Low-Bandgap Organic Semiconductors for Photovoltaic Applications: In the Search of Correlations. Sol. RRL 2400213. https://doi.org/10.1002/solr.202400213
dc.identifier.doi10.1002/solr.202400213
dc.identifier.issn2367-198X
dc.identifier.issn2367-198X
dc.identifier.officialurlhttps://doi.org/10.1002/solr.202400213
dc.identifier.relatedurlhttps://onlinelibrary.wiley.com/doi/10.1002/solr.202400213
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105810
dc.journal.titleSolar RRL
dc.language.isoeng
dc.publisherWILEY-VCH
dc.rights.accessRightsopen access
dc.subject.cdu54
dc.subject.keywordOrganic semiconductors
dc.subject.keywordOrganic photovoltaics
dc.subject.keywordLow Bandgap
dc.subject.ucmCiencias
dc.subject.unesco23 Química
dc.titleHigh‐Throughput Screening of Low‐Bandgap Organic Semiconductors for Photovoltaic Applications: In the Search of Correlations
dc.typejournal article
dc.type.hasVersionAM
dspace.entity.typePublication
relation.isAuthorOfPublication78c95fd7-2774-4a6c-b42a-212d583cba93
relation.isAuthorOfPublication.latestForDiscovery78c95fd7-2774-4a6c-b42a-212d583cba93

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Submitted_solar-rrl-S-24-00275.pdf
Size:
1.67 MB
Format:
Adobe Portable Document Format