Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hierarchical mission planning with a GA-optimizer for unmanned high altitude pseudo-satellites

dc.contributor.authorKiam, Jane Jean
dc.contributor.authorBesada Portas, Eva
dc.contributor.authorSchulte, Axel
dc.date.accessioned2023-06-17T09:02:03Z
dc.date.available2023-06-17T09:02:03Z
dc.date.issued2021-03
dc.description© 2021 by the authors. Licensee MDPI This research was funded by Project StraVARIA, a Ludwig Bolkow Campus project. Eva Besada Portas' contributions are funded by the the Spanish National Challenge Grant RTI2018098962-B-C21.
dc.description.abstractUnmanned Aerial Vehicles (UAVs) are gaining preference for mapping and monitoring ground activities, partially due to the cost efficiency and availability of lightweight high-resolution imaging sensors. Recent advances in solar-powered High Altitude Pseudo-Satellites (HAPSs) widen the future use of multiple UAVs of this sort for long-endurance remote sensing, from the lower stratosphere of vast ground areas. However, to increase mission success and safety, the effect of the wind on the platform dynamics and of the cloud coverage on the quality of the images must be considered during mission planning. For this reason, this article presents a new planner that, considering the weather conditions, determines the temporal hierarchical decomposition of the tasks of several HAPSs. This planner is supported by a Multiple Objective Evolutionary Algorithm (MOEA) that determines the best Pareto front of feasible high-level plans according to different objectives carefully defined to consider the uncertainties imposed by the time-varying conditions of the environment. Meanwhile, the feasibility of the plans is assured by integrating constraints handling techniques in the MOEA. Leveraging historical weather data and realistic mission settings, we analyze the performance of the planner for different scenarios and conclude that it is capable of determining overall good solutions under different conditions.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipLudwig Bolköw Campus
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/64837
dc.identifier.doi10.3390/s21051630
dc.identifier.issn1424-8220
dc.identifier.officialurlhttp://dx.doi.org/10.3390/s21051630
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/21/5/1630
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7988
dc.issue.number5
dc.journal.titleSensors
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.projectIDRTI2018-098962-B-C21
dc.relation.projectIDStraVARIA
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordHAPS
dc.subject.keywordUAV
dc.subject.keywordMonitoring
dc.subject.keywordConstrained multiple objective optimization
dc.subject.keywordTemporal hierarchical task planning
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleHierarchical mission planning with a GA-optimizer for unmanned high altitude pseudo-satellites
dc.typejournal article
dc.volume.number21
dspace.entity.typePublication
relation.isAuthorOfPublication0acc96fe-6132-45c5-ad71-299c9dcb6682
relation.isAuthorOfPublication.latestForDiscovery0acc96fe-6132-45c5-ad71-299c9dcb6682

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
besadaportas22libre+CC.pdf
Size:
4.8 MB
Format:
Adobe Portable Document Format

Collections