Publication:
Reconstructing the stellar mass distributions of galaxies using S^4G irac 3.6 and 4.5 μm images. II. The conversion from light to mass

dc.contributor.authorGil de Paz, Armando
dc.contributor.author..., otros
dc.date.accessioned2023-06-19T14:58:02Z
dc.date.available2023-06-19T14:58:02Z
dc.date.issued2014-06-20
dc.description© 2014. The American Astronomical Society. All rights reserved. Artículo firmado por 29 autores. Thanks to Mariya Lyubenova for fruitful discussion and the entire S4G team. E.A., A.B., J.K., G.vdV., M.Q., S.M., and E.S. acknowledge financial support of the DAGAL network from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number PITN-GA-2011-289313. K.S., J.-C.M.-M., and T.K. acknowledge support from the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
dc.description.abstractWe present a new approach for estimating the 3.6 μm stellar mass-to-light (M/L) ratio Υ_3.6 in terms of the [3.6]-[4.5] colors of old stellar populations. Our approach avoids several of the largest sources of uncertainty in existing techniques using population synthesis models. By focusing on mid-IR wavelengths, we gain a virtually dust extinction-free tracer of the old stars, avoiding the need to adopt a dust model to correctly interpret optical or optical/near-IR colors normally leveraged to assign the mass-to-light ratio Upsilon. By calibrating a new relation between near-IR and mid-IR colors of giant stars observed in GLIMPSE we also avoid the discrepancies in model predictions for the [3.6]-[4.5] colors of old stellar populations due to uncertainties in the molecular line opacities assumed in template spectra. We find that the [3.6]-[4.5] color, which is driven primarily by metallicity, provides a tight constraint on Upsilon3.6, which varies intrinsically less than at optical wavelengths. The uncertainty on Υ3.6 of ~0.07 dex due to unconstrained age variations marks a significant improvement on existing techniques for estimating the stellar M/L with shorter wavelength data. A single Υ3.6 = 0.6 (assuming a Chabrier initial mass function (IMF)), independent of [3.6]-[4.5] color, is also feasible because it can be applied simultaneously to old, metal-rich and young, metal-poor populations, and still with comparable (or better) accuracy (~0.1 dex) than alternatives. We expect our Υ3.6 to be optimal for mapping the stellar mass distributions in S4G galaxies, for which we have developed an independent component analysis technique to first isolate the old stellar light at 3.6 μm from nonstellar emission (e.g., hot dust and the 3.3 polycyclic aromatic hydrocarbon feature). Our estimate can also be used to determine the fractional contribution of nonstellar emission to global (rest-frame) 3.6 μm fluxes, e.g., in WISE imaging, and establishes a reliable basis for exploring variations in the stellar IMF.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDAGAL network of the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme
dc.description.sponsorshipNational Radio Astronomy Observatory (NRAO)
dc.description.sponsorshipUnión Europea (UE)
dc.description.sponsorship7th Framework Programme 7FP (UE)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34841
dc.identifier.citationBalcells, M., Graham, A. W., Domínguez Palmero, L., & Peletier, R. F. 2003, ApJ, 582, L79 Bell, E. F., & de Jong, R. S. 2001, ApJ, 550, 212 Benjamin, B. A., Churchwell, E., Babler, B. L., et al. 2003, PASP, 115, 953 Bernardi, M., Shankar, F., Hyde, J. B., et al. 2010, MNRAS, 404, 2087 Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134 Bolatto, A. D., Simón, J. D., Stanimirović, S., et al. 2007, ApJ, 655, 212 Bruzual, G. 2007, Stellar Populations as Building Blocks of Galaxies (IAU Symp. 241), ed. A. Vazdekis & R. Peletier (Cambridge: Cambridge Univ. Press), 125 Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 2001, 1989, ApJ, 345, 245 Carpenter, J. M. 2001, AJ, 121, 2851 Cesetti, M., Pizzella, A., Ivanov, V. D., et al. 2013, A&A, 549, 129 Churchwell, E., Babler, B. L., Meade, M. R., et al. 2009, PASP, 121, 213 Courteau, S., de Jong, R. S., & Broeils, A. H. 1996, ApJL, 457, 73 Dalcanton, J. J., & Bernstein, R. A. 2002, AJ, 124, 1328 da Cunha, E., Charlot, S., & Elbaz, D. 2008, MNRAS, 388, 1595 de Blok, W. J. G., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2648 de Denus-Baillargeon, M.-M., Hernandez, O., Boissier, et al. 2013, ApJ, 773, 173 Elmegreen, D. M., & Elmegreen, B. G. 1984, ApJS, 54, 127 Elmegreen, B. G., Elmegreen, D. M., Knapen, J. H., et al. 2007, ApJL, 670, 97 Eskew, M., Zaritsky, D., & Meidt, S. E. 2012, AJ, 143, 139 Florido, E., Battaner, E., Guijarro, A., Garzón, F., & Jiménez Vicente, J. 2001, A&A, 378, 82 Foyle, K., Rix, H.-W., & Zibetti, Z. 2010, MNRAS, 407, 163 Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41 Ganda, K., Peletier, R. F., Balcells, M., & Falcón Barroso, J. 2009, MNRAS, 395, 1669 Governato, F., Willman, B., Mayer, L., et al. 2007, MNRAS, 374, 1479 Grosbol, P. 1993, PASP, 105, 651 Guo, Q., & White, S. D. 2008, MNRAS, 384, 2 Haan, S., Schinnerer, E., Emsellem, E., et al. 2009, ApJ, 692, 1623 Harris, J., & Zaritsky, D. 2009, AJ, 138, 1243 Hunter, D. A., Elmegreen, B. G., & Martin, E. 2006, AJ, 132, 801 Indebetouw, R., Mathis, J. S., Babler, B. L., et al. 2005, ApJ, 619, 931 Jansen, R. A., Knapen, J. H., Beckman, J. E., Peletier, R. F., & Hes, R. 1994, MNRAS, 270, 373 Jarrett, T. H., Masci, F., Tsai, C. W., et al. 2013, AJ, 145, 1538 Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 54 Kendall, S., Kennicutt, R. C., Clarke, C., & Thornley, M. D. 2008, MNRAS, 387, 1007 Kreckel, K., Groves, B., Schinnerer, E., et al. 2013, ApJ, 771, 62 Kriek, M., Labbé, I., Conroy, C., et al. 2010, ApJ, 722, L64 Macarthur, L. A., Courteau, S., Bell, E., & Holtzman, J. A. 2004, ApJSS, 152, 175 Maraston, C. 2005, MNRAS, 362, 799 Marigo, P., Girardi, L., Bressan, A., et al. 2008, A&A, 482, 883 Meidt, S. E., Schinnerer, E., Knapen, J., et al. 2012a, ApJ, 744, 17 Meidt, S. E., Schinnerer, E., Muñoz Mateos, J. C., et al. 2012b, ApJ, 748, 30 Mouhcine, M., & Lan¸con, A. 2002, A&A, 393, 149 Navarro, J. F., & White, S. D. M. 1994, MNRAS, 267, 401 Oh, S.-H., de Blok, W. J. G., Walter, F., Brinks, E., & Kennicutt, R. C. 2008, AJ, 136, 2761 Origlia, O., Rood, R. T., Fabbri, S., et al. 2010, ApJ, 718, 522 Pahre, M. A., Ashby, M. L. N., Fazio, G. G., & Willner, S. P. 2004, ApJS, 154, 235 Peletier, R. F., Kutdemir, E., van der Wolk, G., et al. 2012, MNRAS, 419, 2031 Popescu, C. C., Tuffs, R. J., Dopita, M. A., et al. 2011, A&A, 527, 109 Portinari, L., Sommer-Larsen, J., & Tantalo, R. 2004, MNRAS, 347, 691 Prescott, M. K. M., Kenicutt, R. C., Bendo, G. J., et al. 2007, ApJ, 668, 182 Reach, W. T., Megeath, S. T., Cohen, M., et al. 2005, PASP, 117, 978 Rhoads, J. E. 1998, AJ, 115, 472 Rix, H.-W., & Rieke, M. J. 1993, ApJ, 418, 123 Rix, H.-W., & Zaritsky, D. 1995, ApJ, 447, 82 Sheth, K., Regan, M., Hinze, J. L., et al. 2010, PASP, 122, 1397 Somerville, R. S. 2002, ApJL, 572, 23 Zhang, X., & Buta, R. 2007, AJ, 133, 2584 Zhu, Y. N., Wu, H., Li, H.-N., & Cao, C. 2010, RAA, 10, 329 Zibetti, S., Charlot, S., & Rix, H.-W. 2009, MNRAS, 400, 1181 Zibetti, S., Gallazzi, A., Charlot, S., et al. 2012, MNRAS, 428, 1479
dc.identifier.doi10.1088/0004-637X/788/2/144
dc.identifier.issn0004-637X
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0004-637X/788/2/144
dc.identifier.relatedurlhttp://iopscience.iop.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34981
dc.issue.number2
dc.journal.titleAstrophysical journal
dc.language.isoeng
dc.publisherAmerican Astronomical Society
dc.relation.projectIDFP7/2007-2013/
dc.relation.projectIDPITN-GA-2011-289313
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordStar-formation history
dc.subject.keywordColor gradients
dc.subject.keywordSpiral galaxies
dc.subject.keywordPopulation synthesis
dc.subject.keywordMagellanic-cloud
dc.subject.keywordDust extinction
dc.subject.keywordSpace-telescope
dc.subject.keywordSpitzer survey
dc.subject.keywordDisc galaxies
dc.subject.keywordPhotometry
dc.subject.ucmAstrofísica
dc.subject.ucmAstronomía (Física)
dc.titleReconstructing the stellar mass distributions of galaxies using S^4G irac 3.6 and 4.5 μm images. II. The conversion from light to mass
dc.typejournal article
dc.volume.number788
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gildepaz02libre.pdf
Size:
427.15 KB
Format:
Adobe Portable Document Format
Collections