Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Pattern recognition in data as a diagnosis tool

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
Citations
Google Scholar

Citation

Carpio Rodríguez, A. M., Simón, A., Torres, A. y Villa, L. F. «Pattern Recognition in Data as a Diagnosis Tool». Journal of Mathematics in Industry, vol. 12, n.o 1, diciembre de 2022, p. 3. DOI.org (Crossref), https://doi.org/10.1186/s13362-022-00119-w.

Abstract

Medical data often appear in the form of numerical matrices or sequences. We develop mathematical tools for automatic screening of such data in two medical contexts: diagnosis of systemic lupus erythematosus (SLE) patients and identification of cardiac abnormalities. The idea is first to implement adequate data normalizations and then identify suitable hyperparameters and distances to classify relevant patterns. To this purpose, we discuss the applicability of Plackett-Luce models for rankings to hyperparameter and distance selection. Our tests suggest that, while Hamming distances seem to be well adapted to the study of patterns in matrices representing data from laboratory tests, dynamic time warping distances provide robust tools for the study of cardiac signals. The techniques developed here may set a basis for automatic screening of medical information based on pattern comparison.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections