Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Gauge invariance and variational trivial problems on the bundle of connections.

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMuñoz Masqué, Jaime
dc.contributor.authorRatiu, T.
dc.date.accessioned2023-06-20T10:38:21Z
dc.date.available2023-06-20T10:38:21Z
dc.date.issued2003-09
dc.description.abstractGiven a principal bundle P→M we classify all first order Lagrangian densities on the bundle of connections associated to P that are invariant under the Lie algebra of infinitesimal automorphisms. These are shown to be variationally trivial and to give constant actions that equal the characteristic numbers of P if dimM is even and zero if dimM is odd. In addition, we show that variationally trivial Lagrangians are characterized by the de Rham cohomology of the base manifold M and the characteristic classes of P of arbitrary degree
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23326
dc.identifier.doi10.1016/S0926-2245(03)00016-0
dc.identifier.issn0926-2245
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0926224503000160
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50861
dc.issue.number2
dc.journal.titleDifferential Geometry and Its Applications
dc.language.isoeng
dc.page.final145
dc.page.initial127
dc.publisherElsevier Science
dc.rights.accessRightsrestricted access
dc.subject.cdu514.7
dc.subject.keywordCharacteristic classes
dc.subject.keywordConnections on a principal bundle
dc.subject.keywordEuler–Lagrange equations
dc.subject.keywordGauge invariance
dc.subject.keywordInfinitesimal symmetries
dc.subject.keywordJet bundles
dc.subject.keywordLagrangians
dc.subject.keywordLie algebra representations
dc.subject.keywordWeil polynomials
dc.subject.ucmGeometría diferencial
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleGauge invariance and variational trivial problems on the bundle of connections.
dc.typejournal article
dc.volume.number19
dcterms.referencesM.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181–207. M.F. Atiyah, L. Jeffrey, Topological Lagrangians and cohomology, J. Geom. Phys. 7 (1) (1990) 119–136. D.Bleecker, Gauge Theory and Variational Principles,Addison-Wesley, Reading, MA, 1981. A. Cabras, A.M. Vinogradov, Extensions of the Poisson bracket to differential forms and multi-vector fields, J. Geom. Phys. 9 (1992) 75–100. M. Castrillón López, J. Mu~noz Masqué, Gauge-invariant variationally trivial problems on T∗M, J. Math. Phys. 40 (1999) 821–829. J.L. Dupont, Curvature and Characteristic Classes, in: Lecture Notes in Math., Vol. 640, Springer-Verlag, New York, 1978. D.J. Eck, Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc. 247 (1981). P.L. García, Connections and 1-jet bundles, Rend. Sem. Mat. Univ. Padova 47 (1972) 227–242. P.L. García, Gauge algebras, curvature and symplectic structure, J. Differential Geom. 12 (1977) 209–227. P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, CRC Press, Boca Raton, 1995. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, UK, 1983. D. Husemoller, Fibre Bundles, 3rd Edition, Springer-Verlag, New York, 1994. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley-Interscience, New York, 1963; Vol. II, 1969. I. Kolář, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. D. Krupka, Of the structure of the Euler mapping, Arch. Math. 1, Scripta Fac. Sci. Nat. UJEP Brunensis 10 (1974) 55–62. D. Krupka, Trivial Lagrangians in field theory, Differential Geom. Appl. 9 (1998) 293–305. Y.I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, in: Colloquium Publications, Vol. 47, American Mathematical Society, Providence, RI, 1999. J.W. Milnor, J.D. Stasheff, Characteristic Classes, in: Ann. Math. Stud., Vol. 76, Princeton University Press, Princeton, 1974. D.J. Saunders, The Geometry of Jet Bundles, Cambridge University Press, Cambridge, UK, 1989. R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956) 1597–1607.
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
castrillón160pdf.pdf
Size:
192.2 KB
Format:
Adobe Portable Document Format

Collections