Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Decoherence and quantum quench: their relationship with excited state quantum phase transitions

dc.book.titleBeauty in physics: theory and experiment: in honor of Francesco Lachello on the occasion of his 70th birthday
dc.contributor.authorGarcía Ramos, J. E.
dc.contributor.authorArias, J. M.
dc.contributor.authorCejnar, P.
dc.contributor.authorDukelsky, J.
dc.contributor.authorPérez Fernández, P.
dc.contributor.authorRelaño Pérez, Armando
dc.date.accessioned2023-06-20T05:47:48Z
dc.date.available2023-06-20T05:47:48Z
dc.date.issued2012
dc.description© American Institute of Physics (AIP). Meeting on Beauty in Physics - Theory and Experiment in Honor of Francesco Lachello on the Occasion of his 70th Birthday (2012. Hacienda Cocoyoc, Mexico). This work is presented on the occasion of Franco Iachello’s 70th birthday. It has been partially supported by the Spanish Government (FEDER) under projects number FIS2011-28738-C02-01/02, FIS2009-07277, by Junta de Andalucía under projects FQM160, FQM318, P07-FQM-02962 and P07-FQM-02962, by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), and by the Czeck Ministry of Education (contract 0021620859).
dc.description.abstractWe study the similarities and differences between the phenomena of Quantum Decoherence and Quantum Quench in presence of an Excited State Quantum Phase Transition (ESQPT). We analyze, on one hand, the decoherence induced on a single qubit by the interaction with a two-level boson system with critical internal dynamics and, on the other, we treat the quantum relaxation process that follows an abrupt quench in the control parameter of the system Hamiltonian. We explore how the Quantum Decoherence and the quantum relaxation process are affected by the presence of an ESQPT. We conclude that the dynamics of the qubit or the quantum relaxation process change dramatically when the system passes through a continuous ESQPT.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipFondo Europeo de Desarrollo Regional (FEDER)
dc.description.sponsorshipUnión Europea (EU)
dc.description.sponsorshipGobierno de España
dc.description.sponsorshipJunta de Andalucía
dc.description.sponsorshipPrograma Consolider-Ingenio 2010
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipCzeck Ministry of Education
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35465
dc.identifier.doi10.1063/1.4759412
dc.identifier.isbn978-0-7354-1100-5
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.4759412
dc.identifier.relatedurlhttp://scitation.aip.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45628
dc.issue.number1488
dc.language.isoeng
dc.page.final317
dc.page.initial309
dc.publisherAmerican Institute of Physics (AIP)
dc.relation.ispartofseriesAIP Proceedings
dc.relation.projectIDFIS2011-28738-C02-01/02
dc.relation.projectIDFIS2009-07277
dc.relation.projectIDFQM160
dc.relation.projectIDFQM318
dc.relation.projectIDP07-FQM-02962
dc.relation.projectIDP07-FQM-02962
dc.relation.projectIDCPAN (CSD2007-00042)
dc.relation.projectID0021620859
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordQuantum decoherence
dc.subject.keywordQuantum quench
dc.subject.keywordExcited state quantum phase transition
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleDecoherence and quantum quench: their relationship with excited state quantum phase transitions
dc.typebook part
dcterms.references1. W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003). 2. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000). 3. E. Barouch and M. Dresden, Phys. Rev. Lett. 23, 114 (1969). 4. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch, Nature 415, 39 (2002); M. Greiner, O. Mandel, T. Hänsch, and I. Bloch, ibid. 419, 51 (2002). 5. R. Gilmore and D.H. Feng, Nucl. Phys. A 301, 189 (1978); R. Gilmore, J. Math. Phys. 20, 891 (1979); R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, 1981). 6. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999). 7. R.F. Casten, Prog. Part. Nucl. Phys. 62, 183 (2009); P. Cejnar and J. Jolie, ibid. 62, 210 (2009). 8. P. Cejnar, J. Jolie, and R.F. Casten, Rev. Mod. Phys., in press (2010). 9. M. A. Caprio, P. Cejnar, and F. Iachello, Ann. Phys 323, 1106 (2008). 10. P. Cejnar, S. Heinze, and M. Macek, Phys. Rev. Lett. 99, 100601 (2007). 11. H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev. Lett. 96, 140604 (2006); F. M. Cucchietti, S. Fernandez-Vidal, and J. P. Paz, Phys. Rev. A 75, 032337 (2007); C. Cormick and J. P. Paz, Phys Rev. A 77, 022317 (2008). 12. A. Relaño, J.M. Arias, J. Dukelsky, J.E. García-Ramos, and P. Pérez-Fernández, Phys. Rev. A 78, 060102R (2008). 13. P. Pérez-Fernández. A. Relaño, J.M. Arias, J. Dukelsky, J.E. García-Ramos, Phys. Rev. A 80, 032111 (2009). 14. J. Vidal, J.M. Arias, J. Dukelsky, J. E. García-Ramos, Phys. Rev. C 73, 054305 (2006); J.M. Arias, J. Dukelsky, J. E. García-Ramos, and J. Vidal, Phys. Rev. C 75, 014301 (2007). 15. P. Pérez-Fernández. P. Cejnar, J.M. Arias, J. Dukelsky, J.E. García-Ramos, and A. Relaño, Phys. Rev. A 83, 033802 (2011). 16. E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963); M. Tavis and F.W. Cummings, Phys. Rev. 170, 379 (1968). 17. R.H. Dicke, Phys. Rev. 93, 99 (1954).
dspace.entity.typePublication
relation.isAuthorOfPublication53fed635-944b-485a-b13a-ea8f9355b7aa
relation.isAuthorOfPublication.latestForDiscovery53fed635-944b-485a-b13a-ea8f9355b7aa

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Relano 10 preprint.pdf
Size:
638.29 KB
Format:
Adobe Portable Document Format