Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Improving community detection algorithms in directed graphs with fuzzy measures. An application to mobility networks

dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.contributor.authorBarroso Pérez, María
dc.contributor.authorGómez González, Daniel
dc.contributor.authorCastro Cantalejo, Javier
dc.date.accessioned2025-01-13T13:11:09Z
dc.date.available2025-01-13T13:11:09Z
dc.date.issued2025-01-08
dc.description.abstractThis paper proposes a novel methodology to enhance any community detection algorithm for directed networks by introducing a flow-based fuzzy measure, which improves both partition quality and the interpretability of the algorithm. To do so, we focus on a novel aggregation paradigm which combines social networks with fuzzy measures. We explore the potential of incorporating information from fuzzy measures, specifically with a flow capacity measure, to improve and optimize community detection algorithms. We present a detailed evaluation process to demonstrate the effectiveness of this methodology. To achieve this, we analyze a robust repository of databases, using several classical community detection techniques. A comprehensive comparison of classic results with the new methodology demonstrates the effectiveness of the presented aggregation paradigm. We reach a more conclusive understanding of the impact of our methodology through the application of machine learning techniques. Therefore, the proposed methodology enhances community detection performance in directed networks by incorporating flow-based fuzzy measures. We also illustrate its effectiveness through a case study. It showcases improved partition quality compared to traditional algorithms, along with theoretical insights into the fuzzy approach.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipGobierno de España, Gran Plan Nacional de I+D+i
dc.description.statuspub
dc.identifier.citationGarcía-Pardo, I.G. et al. (2025) “Improving community detection algorithms in directed graphs with fuzzy measures. An application to mobility networks,” Expert Systems with Applications, 269, p. 126305. Available at: https://doi.org/10.1016/j.eswa.2024.126305
dc.identifier.doi10.1016/j.eswa.2024.126305
dc.identifier.issn0957-4174
dc.identifier.officialurlhttps://doi.org/10.1016/j.eswa.2024.126305
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0957417424031725
dc.identifier.urihttps://hdl.handle.net/20.500.14352/113971
dc.journal.titleExpert Systems with Applications Expert Systems with Applications
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDPID2021-122905NB-C21
dc.rights.accessRightsrestricted access
dc.subject.cdu004.738.5
dc.subject.cdu519.6
dc.subject.keywordCommunity detection problems
dc.subject.keywordFuzzy measures
dc.subject.keywordAggregation
dc.subject.keywordFlow capacity measure
dc.subject.keywordSocial network analysis
dc.subject.keywordMachine learning
dc.subject.ucmInternet (Informática)
dc.subject.ucmAnálisis numérico
dc.subject.unesco1206 Análisis Numérico
dc.titleImproving community detection algorithms in directed graphs with fuzzy measures. An application to mobility networks
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number269
dspace.entity.typePublication
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublicatione556dae6-6552-4157-b98a-904f3f7c9101
relation.isAuthorOfPublication.latestForDiscovery2f4cd183-2dd2-4b4e-8561-9086ff5c0b90

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Improving community.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format

Collections