Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Strictly singular and strictly co-singular inclusions between symmetric sequence spaces

dc.contributor.authorHernández, Francisco L.
dc.contributor.authorSánchez de los Reyes, Víctor Manuel
dc.contributor.authorSemenov, Evgeny M.
dc.date.accessioned2023-06-20T09:37:33Z
dc.date.available2023-06-20T09:37:33Z
dc.date.issued2004-03-15
dc.description.abstractStrict singularity and strict co-singularity of inclusions between symmetric sequence spaces are studied. Suitable conditions are provided involving the associated fundamental functions. The special case of Lorentz and Marcinkiewicz spaces is characterized. It is also proved that if E hooked right arrow F are symmetric sequence spaces with E ≠ l(1) and F ≠ l c(0) and l(∞) then there exist a intermediate symmetric sequence space G such that E hooked right arrow G hooked right arrow F and both inclusions are not strictly singular. As a consequence new characterizations of the spaces c(o) and l(1) inside the class of all symmetric sequence spaces are given.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGES
dc.description.sponsorshipRFFI
dc.description.sponsorshipUniversities of Russia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16004
dc.identifier.doi10.1016/j.jmaa.2003.11.010
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X03008448
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50060
dc.issue.number2
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final476
dc.page.initial459
dc.publisherElsevier
dc.relation.projectIDBMF2001-1284
dc.relation.projectID02-01-00146
dc.relation.projectID04.01.051
dc.rights.accessRightsrestricted access
dc.subject.cdu517.982.27
dc.subject.cdu517.98
dc.subject.keywordBasic sequences
dc.subject.keywordOrlicz spaces
dc.subject.keywordoperators
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleStrictly singular and strictly co-singular inclusions between symmetric sequence spaces
dc.typejournal article
dc.volume.number291
dcterms.referencesZ. Altshuler, P.G. Casazza, B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973) 140–155. S.V. Astashkin, Disjointly strictly singular inclusions of symmetric spaces, Math. Notes 65 (1999) 3–12. C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988. P.G. Casazza, B.-L. Lin, On symmetric basic sequences in Lorentz sequence spaces II, Israel J. Math. 17 (1974) 191–218. F. Cobos, A. Manzano, A. Martínez, P. Matos, On interpolation of strictly singular operators, strictly cosingular operators and related operator ideals, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 971–989. A. Defant, M. Mastyło, C. Michels, Summing inclusion maps between symmetric sequence spaces, a survey, in: K. Bierstedt, et al. (Eds.), Recent Progress in Functional Analysis, Valencia, 2000, in: North-Holland Math. Stud., vol. 189, 2001, pp. 43–60. A. García del Amo, F.L. Hernández, V.M. Sánchez, E.M. Semenov, Disjointly strictly-singular inclusions between rearrangement invariant spaces, J. London Math. Soc. 62 (2000) 239–252. D.J.H. Garling, On symmetric sequence spaces, Proc. London Math. Soc. 16 (1966) 85–106. F.L. Hernández, Disjointly strictly-singular operators in Banach lattices, 18th Winter School on Abstract Analysis, Srní, 1990, Acta Univ. Carolin. Math. Phys. 31 (1990) 35–40. F.L. Hernández, B. Rodríguez-Salinas, On l(p)-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989) 27–55. F.L. Hernández, B. Rodríguez-Salinas, Lattice embedding scales of Lp-spaces into Orlicz spaces, Israel J. Math. 104 (1998) 191–220. N.J. Kalton, Orlicz sequence spaces without local convexity, Math. Proc. Cambridge Philos. Soc. 81 (1977) 253–277. S.G. Kreĭn, Ju.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, Amer. Math. Society, 1982. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer-Verlag, 1977. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer-Verlag, 1979. D. Noll, Strict singularity of inclusion operators between γ -spaces and Meyer–König Zeller type theorems, Illinois J. Math. 35 (1991) 93–106. A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. Cl. III 13 (1965) 31–36. A. Pełczyński, On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in L(ν)-spaces, Bull. Acad. Polon. Sci. Cl. III 13 (1965) 37–41. D. Przeworska-Rolewicz, S. Rolewicz, Equations in Linear Spaces, Polish Scientific Publishers, 1968. A.K. Snyder, Strictly (co)singular operators, the Meyer–König Zeller property, and sums of Banach spaces, Illinois J. Math. 33 (1989) 93–102. R.J.Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 113 (1964) 252–261
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HerRod03.pdf
Size:
271.73 KB
Format:
Adobe Portable Document Format

Collections