Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New many-body problems in the plane with periodic solutions

dc.contributor.authorGómez-Ullate Otaiza, David
dc.contributor.authorHone, A.N.W.
dc.contributor.authorSommacal, M
dc.date.accessioned2023-06-20T10:55:35Z
dc.date.available2023-06-20T10:55:35Z
dc.date.issued2004-02-17
dc.description© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This work was begun during the scientific gathering on Integrable Systems organized at the Centro Internacional de Ciencias, Cuernavaca in November–December 2002. The authors thank the staff of the CiC, especially the director Thomas Seligman, for providing the pleasant atmosphere in which the work was initiated. The research of DGU is partially supported by the CRM-ISM grant and the Spanish Ministry of Education.ANWH thanks the London Mathematical Society for supporting his stay in Mexico with a Scheme 5 grant. The authors thank Francesco Calogero for teaching them many of the developments contained in this work.
dc.description.abstractIn this paper we discuss a family of toy models for many-body interactions including velocity-dependent forces. By generalizing a construction due to Calogero, we obtain a class of N-body problems in the plane which have periodic orbits for a large class of initial conditions. The two- and three-body cases (N = 2, 3) are exactly solvable, with all solutions being periodic, and we present their explicit solutions. For N greater than or equal to 4 Painleve analysis indicates that the system should not be integrable, and some periodic and non-periodic trajectories are calculated numerically. The construction can be generalized to a broad class of systems, and the mechanism which describes the transition to orbits with higher periods, and eventually to aperiodic or even chaotic orbits, could be present in more realistic models with a mixed phase space. This scenario is different from the onset of chaos by a sequence of Hopf bifurcations.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education
dc.description.sponsorshipLondon Mathematical Society
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30914
dc.identifier.doi10.1088/1367-2630/6/1/024
dc.identifier.issn1367-2630
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1367-2630/6/1/024
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51462
dc.journal.titleNew journal of physics
dc.language.isoeng
dc.publisherIOP Publishing
dc.relation.projectIDCRM-ISM
dc.relation.projectIDScheme 5 grant
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPhysics
dc.subject.keywordMultidisciplinary
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleNew many-body problems in the plane with periodic solutions
dc.typejournal article
dc.volume.number6
dcterms.references[1] Ruelle D and Takens F 1971 Commun. Math. Phys. 20 167 [2] Nekhoroshev N N 1972 Trans. Moscow Math. Soc. 26 180 [3] Evans N W 1990 Phys. Rev. A 41 5666 [4] Winternitz P, Smorodinsky J, Uhlir M and Fris I 1967 Sov. J. Nucl. Phys. 4 444 [5] Calogero F 1997 J. Math. Phys. 38 5711 [6] Calogero F and Francoise J P 2002 J. Nonlinear Math. Phys. 9 99 [7] Calogero F 2002 J. Phys. A: Math. Gen. 35 3619 [8] Calogero F and Inozemtsev V I 2002 J. Phys. A: Math. Gen. 35 10365 [9] Calogero F, Francoise J P and Sommacal M 2003 J. Nonlinear Math. Phys. 10 157 [10] Calogero F 1978 Nuovo Cimento B 43 177 [11] Gómez-Ullate D, González-López A and Rodríguez M A 2000 J. Phys. A: Math. Gen. 33 1 [12] Calogero F and Sommacal M 2002 Periodic solutions of a system of complex ODEs. II. Higher periods J. Nonlinear Math. Phys. 9 483 [13] Calogero F 2001 Classical Many-body Problems Amenable to Exact Treatments (Lecture Notes in Physics Monograph vol 66) (Berlin: Springer) [14] Ince E L 1926 Ordinary Differential Equations Reprint 1956 (New York: Dover) [15] Newell A C, Tabor M and Zeng Y B 1987 Physica D 29 1 [16] Ramani A, Grammaticos B and Bountis T 1989 Phys. Rep. 180 159 [17] Conte R, Fordy A P and Pickering A 1993 Physica D 69 33 [18] Ramani A, Dorizzi B and Grammaticos B 1982 Phys. Rev. Lett. 49 1538 [19] Sommacal M 2002 Studio con tecniche numeriche ed analitiche di problemi a molti corpi nel piano, Dissertation for the Laurea in Fisica, Department of Physics, University of Rome ‘La Sapienza’ [20] Calogero F 2002 Theor. Math. Phys. 133 1445
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate28libre.pdf
Size:
8.75 MB
Format:
Adobe Portable Document Format

Collections